Critical flaws continue to exist at the level of domain, requirement, and/or design specification, and specification verification (i.e., to check whether a specification has desirable properties) is still one of the most important challenges in software/system engineering. CafeOBJ is an executable algebraic specification language system and domain/requirement/design engineers can write proof scores for improving quality of specifications by the specification verification. This paper describes advances of the proof scores for the specification verification in CafeOBJ.
We use Markov categories to develop generalizations of the theory of Markov chains and hidden Markov models in an abstract setting. This comprises characterizations of hidden Markov models in terms of local and global conditional independences as well as existing algorithms for Bayesian filtering and smoothing applicable in all Markov categories with conditionals. We show that these algorithms specialize to existing ones such as the Kalman filter, forward-backward algorithm, and the Rauch-Tung-Striebel smoother when instantiated in appropriate Markov categories. Under slightly stronger assumptions, we also prove that the sequence of outputs of the Bayes filter is itself a Markov chain with a concrete formula for its transition maps. There are two main features of this categorical framework. The first is its generality, as it can be used in any Markov category with conditionals. In particular, it provides a systematic unified account of hidden Markov models and algorithms for filtering and smoothing in discrete probability, Gaussian probability, measure-theoretic probability, possibilistic nondeterminism and others at the same time. The second feature is the intuitive visual representation of information flow in these algorithms in terms of string diagrams.
Biometric authentication prospered because of its convenient use and security. Early generations of biometric mechanisms suffer from spoofing attacks. Recently, unobservable physiological signals (e.g., Electroencephalogram, Photoplethysmogram, Electrocardiogram) as biometrics offer a potential remedy to this problem. In particular, Photoplethysmogram (PPG) measures the change in blood flow of the human body by an optical method. Clinically, researchers commonly use PPG signals to obtain patients' blood oxygen saturation, heart rate, and other information to assist in diagnosing heart-related diseases. Since PPG signals contain a wealth of individual cardiac information, researchers have begun to explore their potential in cyber security applications. The unique advantages (simple acquisition, difficult to steal, and live detection) of the PPG signal allow it to improve the security and usability of the authentication in various aspects. However, the research on PPG-based authentication is still in its infancy. The lack of systematization hinders new research in this field. We conduct a comprehensive study of PPG-based authentication and discuss these applications' limitations before pointing out future research directions.
Researchers commonly use difference-in-differences (DiD) designs to evaluate public policy interventions. While established methodologies exist for estimating effects in the context of binary interventions, policies often result in varied exposures across regions implementing the policy. Yet, existing approaches for incorporating continuous exposures face substantial limitations in addressing confounding variables associated with intervention status, exposure levels, and outcome trends. These limitations significantly constrain policymakers' ability to fully comprehend policy impacts and design future interventions. In this study, we propose innovative estimators for causal effect curves within the DiD framework, accounting for multiple sources of confounding. Our approach accommodates misspecification of a subset of treatment, exposure, and outcome models while avoiding any parametric assumptions on the effect curve. We present the statistical properties of the proposed methods and illustrate their application through simulations and a study investigating the diverse effects of a nutritional excise tax.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
With the increasing popularity of conversational search, how to evaluate the performance of conversational search systems has become an important question in the IR community. Existing works on conversational search evaluation can mainly be categorized into two streams: (1) constructing metrics based on semantic similarity (e.g. BLUE, METEOR and BERTScore), or (2) directly evaluating the response ranking performance of the system using traditional search methods (e.g. nDCG, RBP and nERR). However, these methods either ignore the information need of the user or ignore the mixed-initiative property of conversational search. This raises the question of how to accurately model user satisfaction in conversational search scenarios. Since explicitly asking users to provide satisfaction feedback is difficult, traditional IR studies often rely on the Cranfield paradigm (i.e., third-party annotation) and user behavior modeling to estimate user satisfaction in search. However, the feasibility and effectiveness of these two approaches have not been fully explored in conversational search. In this paper, we dive into the evaluation of conversational search from the perspective of user satisfaction. We build a novel conversational search experimental platform and construct a Chinese open-domain conversational search behavior dataset containing rich annotations and search behavior data. We also collect third-party satisfaction annotation at the session-level and turn-level, to investigate the feasibility of the Cranfield paradigm in the conversational search scenario. Experimental results show both some consistency and considerable differences between the user satisfaction annotations and third-party annotations. We also propose dialog continuation or ending behavior models (DCEBM) to capture session-level user satisfaction based on turn-level information.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.