Automatic differentiation variational inference (ADVI) offers fast and easy-to-use posterior approximation in multiple modern probabilistic programming languages. However, its stochastic optimizer lacks clear convergence criteria and requires tuning parameters. Moreover, ADVI inherits the poor posterior uncertainty estimates of mean-field variational Bayes (MFVB). We introduce "deterministic ADVI" (DADVI) to address these issues. DADVI replaces the intractable MFVB objective with a fixed Monte Carlo approximation, a technique known in the stochastic optimization literature as the "sample average approximation" (SAA). By optimizing an approximate but deterministic objective, DADVI can use off-the-shelf second-order optimization, and, unlike standard mean-field ADVI, is amenable to more accurate posterior covariances via linear response (LR). In contrast to existing worst-case theory, we show that, on certain classes of common statistical problems, DADVI and the SAA can perform well with relatively few samples even in very high dimensions, though we also show that such favorable results cannot extend to variational approximations that are too expressive relative to mean-field ADVI. We show on a variety of real-world problems that DADVI reliably finds good solutions with default settings (unlike ADVI) and, together with LR covariances, is typically faster and more accurate than standard ADVI.
Index structures often materialize one or multiple levels of explicit indirections (aka pointers) to allow for a quick traversal to the data of interest. Unfortunately, dereferencing a pointer to go from one level to the other is costly since additionally to following the address, it involves two address translations from virtual memory to physical memory under the hood. In the worst case, such an address translation is resolved by an index access itself, namely by a lookup into the page table, a central hardware-accelerated index structure of the OS. However, if the page table is anyways constantly queried, it raises the question whether we can actively incorporate it into our database indexes and make it work for us. Precisely, instead of materializing indirections in form of pointers, we propose to express these indirections directly in the page table wherever possible. By introducing such shortcuts, we (a) effectively reduce the height of traversal during lookups and (b) exploit the hardware-acceleration of lookups in the page table. In this work, we analyze the strengths and considerations of this approach and showcase its effectiveness at the case of the real-world indexing scheme extendible hashing.
Large Language models (LLMs) possess the capability to engage In-context Learning (ICL) by leveraging a few demonstrations pertaining to a new downstream task as conditions. However, this particular learning paradigm suffers from high instability stemming from substantial variances induced by factors such as the input distribution of selected examples, their ordering, and prompt formats. In this work, we demonstrate that even when all these factors are held constant, the random selection of examples still results in high variance. Consequently, we aim to explore the informative ability of data examples by quantifying the Information Gain (IG) obtained in prediction after observing a given example candidate. Then we propose to sample those with maximum IG. Additionally, we identify the presence of template bias, which can lead to unfair evaluations of IG during the sampling process. To mitigate this bias, we introduce Calibration Before Sampling strategy. The experimental results illustrate that our proposed method can yield an average relative improvement of 14.3% across six classification tasks using three LLMs.
The fusion of human-centric design and artificial intelligence (AI) capabilities has opened up new possibilities for next-generation autonomous vehicles that go beyond transportation. These vehicles can dynamically interact with passengers and adapt to their preferences. This paper proposes a novel framework that leverages Large Language Models (LLMs) to enhance the decision-making process in autonomous vehicles. By utilizing LLMs' linguistic and contextual understanding abilities with specialized tools, we aim to integrate the language and reasoning capabilities of LLMs into autonomous vehicles. Our research includes experiments in HighwayEnv, a collection of environments for autonomous driving and tactical decision-making tasks, to explore LLMs' interpretation, interaction, and reasoning in various scenarios. We also examine real-time personalization, demonstrating how LLMs can influence driving behaviors based on verbal commands. Our empirical results highlight the substantial advantages of utilizing chain-of-thought prompting, leading to improved driving decisions, and showing the potential for LLMs to enhance personalized driving experiences through ongoing verbal feedback. The proposed framework aims to transform autonomous vehicle operations, offering personalized support, transparent decision-making, and continuous learning to enhance safety and effectiveness. We achieve user-centric, transparent, and adaptive autonomous driving ecosystems supported by the integration of LLMs into autonomous vehicles.
This work identifies a simple pre-training mechanism that leads to representations exhibiting better continual and transfer learning. This mechanism -- the repeated resetting of weights in the last layer, which we nickname "zapping" -- was originally designed for a meta-continual-learning procedure, yet we show it is surprisingly applicable in many settings beyond both meta-learning and continual learning. In our experiments, we wish to transfer a pre-trained image classifier to a new set of classes, in a few shots. We show that our zapping procedure results in improved transfer accuracy and/or more rapid adaptation in both standard fine-tuning and continual learning settings, while being simple to implement and computationally efficient. In many cases, we achieve performance on par with state of the art meta-learning without needing the expensive higher-order gradients, by using a combination of zapping and sequential learning. An intuitive explanation for the effectiveness of this zapping procedure is that representations trained with repeated zapping learn features that are capable of rapidly adapting to newly initialized classifiers. Such an approach may be considered a computationally cheaper type of, or alternative to, meta-learning rapidly adaptable features with higher-order gradients. This adds to recent work on the usefulness of resetting neural network parameters during training, and invites further investigation of this mechanism.
These are self-contained lecture notes for spectral independence. For an $n$-vertex graph, the spectral independence condition is a bound on the maximum eigenvalue of the $n\times n$ influence matrix whose entries capture the influence between pairs of vertices, it is closely related to the covariance matrix. We will present recent results showing that spectral independence implies the mixing time of the Glauber dynamics is polynomial (where the degree of the polynomial depends on certain parameters). The proof utilizes local-to-global theorems which we will detail in these notes. Finally, we will present more recent results showing that spectral independence implies an optimal bound on the relaxation time (inverse spectral gap) and with some additional conditions implies an optimal mixing time bound of $O(n\log{n})$ for the Glauber dynamics. We also present the results of Anari, Liu, Oveis Gharan, and Vinzant (2019) for generating a random basis of a matroid. The analysis of the associated bases-exchange walk utilizes the local-to-global theorems used for spectral independence with the Trickle-Down Theorem of Oppenheim (2018) to analyze the local walks. Our focus in these notes is on the analysis of the spectral gap of the associated Markov chains from a functional analysis perspective, and we present proofs of the associated local-to-global theorems from this same Markov chain perspective.
Semantic communication aims to transmit meaningful and effective information rather than focusing on individual symbols or bits, resulting in benefits like reduced latency, bandwidth usage, and higher throughput compared to traditional communication. However, semantic communication poses significant challenges due to the need for universal metrics for benchmarking the joint effects of semantic information loss and practical energy consumption. This research presents a novel multi-objective loss function named "Energy-Optimized Semantic Loss" (EOSL), addressing the challenge of balancing semantic information loss and energy consumption. Through comprehensive experiments on transformer models, including CPU and GPU energy usage, it is demonstrated that EOSL-based encoder model selection can save up to 90\% of energy while achieving a 44\% improvement in semantic similarity performance during inference in this experiment. This work paves the way for energy-efficient neural network selection and the development of greener semantic communication architectures.
As scientific literature has grown exponentially, researchers often rely on paper triaging strategies such as browsing abstracts before deciding to delve into a paper's full text. However, when an abstract is insufficient, researchers are required to navigate an informational chasm between 150-word abstracts and 10,000-word papers. To bridge that gap, we introduce the idea of recursively expandable summaries and present Qlarify, an interactive system that allows users to recursively expand an abstract by progressively incorporating additional information from a paper's full text. Starting from an abstract, users can brush over summary text to specify targeted information needs or select AI-suggested entities in the text. Responses are then generated on-demand by an LLM and appear in the form of a fluid, threaded expansion of the existing text. Each generated summary can be efficiently verified through attribution to a relevant source-passage in the paper. Through an interview study (n=9) and a field deployment (n=275) at a research conference, we use Qlarify as a technology probe to elaborate upon the expandable summaries design space, highlight how scholars benefit from Qlarify's expandable abstracts, and identify future opportunities to support low-effort and just-in-time exploration of scientific documents $\unicode{x2013}$ and other information spaces $\unicode{x2013}$ through LLM-powered interactions.
Systems for making determinations on socially-constructed and complex concepts at scale are increasingly being deployed. To make such fuzzy concepts tractable for training and evaluating AI, aligning model outputs, or human-in-the-loop workflows, the prevailing strategy involves developing `constitutions' in the form of rules, policies, or principles. However, high-level rules often fail to capture situational nuances or have differing interpretations, resulting in inconsistent decisions. In this work, we introduce case law grounding (CLG), a hybrid workflow inspired by case law in the legal realm where past judgments on specific cases inform new decisions. Evaluating on two task domains, we find that CLG can improve alignment of decisions (+9.6% and +10.9% accuracy) and consistency ($\Delta\bar{\kappa}$ of +0.263 and +0.433) of human decision-makers, while also providing auditable rationales. We also find similarly substantial alignment improvements for an LLM decision-maker (+25% and +23% accuracy).
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.