Large Language Models (LLMs) based on the pre-trained fine-tuning paradigm have become pivotal in solving natural language processing tasks, consistently achieving state-of-the-art performance. Nevertheless, the theoretical understanding of how model complexity influences fine-tuning performance remains challenging and has not been well explored yet. In this paper, we focus on autoregressive LLMs and propose to employ Hidden Markov Models (HMMs) to model them. Based on the HMM modeling, we investigate the relationship between model complexity and the generalization capability in downstream tasks. Specifically, we consider a popular tuning paradigm for downstream tasks, head tuning, where all pre-trained parameters are frozen and only individual heads are trained atop pre-trained LLMs. Our theoretical analysis reveals that the risk initially increases and then decreases with rising model complexity, showcasing a "double descent" phenomenon. In this case, the initial "descent" is degenerate, signifying that the "sweet spot" where bias and variance are balanced occurs when the model size is zero. Obtaining the presented in this study conclusion confronts several challenges, primarily revolving around effectively modeling autoregressive LLMs and downstream tasks, as well as conducting a comprehensive risk analysis for multivariate regression. Our research is substantiated by experiments conducted on data generated from HMMs, which provided empirical support and alignment with our theoretical insights.
Thanks to unprecedented language understanding and generation capabilities of large language model (LLM), Retrieval-augmented Code Generation (RaCG) has recently been widely utilized among software developers. While this has increased productivity, there are still frequent instances of incorrect codes being provided. In particular, there are cases where plausible yet incorrect codes are generated for queries from users that cannot be answered with the given queries and API descriptions. This study proposes a task for evaluating answerability, which assesses whether valid answers can be generated based on users' queries and retrieved APIs in RaCG. Additionally, we build a benchmark dataset called Retrieval-augmented Code Generability Evaluation (RaCGEval) to evaluate the performance of models performing this task. Experimental results show that this task remains at a very challenging level, with baseline models exhibiting a low performance of 46.7%. Furthermore, this study discusses methods that could significantly improve performance.
In the era of Generative AI, Neurosymbolic AI is emerging as a powerful approach for tasks spanning from perception to cognition. The use of Neurosymbolic AI has been shown to achieve enhanced capabilities, including improved grounding, alignment, explainability, and reliability. However, due to its nascent stage, there is a lack of widely available real-world benchmark datasets tailored to Neurosymbolic AI tasks. To address this gap and support the evaluation of current and future methods, we introduce DSceneKG -- a suite of knowledge graphs of driving scenes built from real-world, high-quality scenes from multiple open autonomous driving datasets. In this article, we detail the construction process of DSceneKG and highlight its application in seven different tasks. DSceneKG is publicly accessible at: //github.com/ruwantw/DSceneKG
Neural networks trained with stochastic gradient descent exhibit an inductive bias towards simpler decision boundaries, typically converging to a narrow family of functions, and often fail to capture more complex features. This phenomenon raises concerns about the capacity of deep models to adequately learn and represent real-world datasets. Traditional approaches such as explicit regularization, data augmentation, architectural modifications, etc., have largely proven ineffective in encouraging the models to learn diverse features. In this work, we investigate the impact of pre-training models with noisy labels on the dynamics of SGD across various architectures and datasets. We show that pretraining promotes learning complex functions and diverse features in the presence of noise. Our experiments demonstrate that pre-training with noisy labels encourages gradient descent to find alternate minima that do not solely depend upon simple features, rather learns more complex and broader set of features, without hurting performance.
An argument can be seen as a pair consisting of a set of premises and a claim supported by them. Arguments used by humans are often enthymemes, i.e., some premises are implicit. To better understand, evaluate, and compare enthymemes, it is essential to decode them, i.e., to find the missing premisses. Many enthymeme decodings are possible. We need to distinguish between reasonable decodings and unreasonable ones. However, there is currently no research in the literature on "How to evaluate decodings?". To pave the way and achieve this goal, we introduce seven criteria related to decoding, based on different research areas. Then, we introduce the notion of criterion measure, the objective of which is to evaluate a decoding with regard to a certain criterion. Since such measures need to be validated, we introduce several desirable properties for them, called axioms. Another main contribution of the paper is the construction of certain criterion measures that are validated by our axioms. Such measures can be used to identify the best enthymemes decodings.
This study investigates the translation of circumlocution from Arabic to English in a corpus of short stories by renowned Arabic authors. By analyzing the source and target texts, the study aims to identify and categorize circumlocution instances in Arabic and their corresponding renditions in English. The study employs Nida's (1964) translation theory as a framework to assess the appropriateness of the translation strategies employed. It examines the extent to which translators successfully rendered Arabic circumlocution into English, identifying potential challenges and limitations in the translation process. The findings reveal significant similarities between Arabic circumlocution categories and English metadiscourse categories, particularly in terms of textual and interpersonal functions. However, the study also highlights instances where translators encountered difficulties in accurately conveying the nuances of circumlocution, often resorting to strategies like addition, subtraction, and alteration.//ntu.edu.iq/
Traditional neural networks are simple to train but they typically produce overconfident predictions. In contrast, Bayesian neural networks provide good uncertainty quantification but optimizing them is time consuming due to the large parameter space. This paper proposes to combine the advantages of both approaches by performing Variational Inference in the Final layer Output space (VIFO), because the output space is much smaller than the parameter space. We use neural networks to learn the mean and the variance of the probabilistic output. Using the Bayesian formulation we incorporate collapsed variational inference with VIFO which significantly improves the performance in practice. On the other hand, like standard, non-Bayesian models, VIFO enjoys simple training and one can use Rademacher complexity to provide risk bounds for the model. Experiments show that VIFO provides a good tradeoff in terms of run time and uncertainty quantification, especially for out of distribution data.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.
Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.
Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.