亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose in this paper to exploit convolutional low density generator matrix (LDGM) codes for transmission of Bernoulli sources over binary-input output-symmetric (BIOS) channels. To this end, we present a new framework to prove the coding theorems for linear codes, which unifies the channel coding theorem, the source coding theorem and the joint source-channel coding (JSCC) theorem. In the presented framework, the systematic bits and the corresponding parity-check bits play different roles. Precisely, the noisy systematic bits are used to limit the list size of typical codewords, while the noisy parity-check bits are used to select from the list the maximum likelihood codeword. This new framework for linear codes allows that the systematic bits and the parity-check bits are transmitted in different ways and over different channels. With this framework, we prove that the Bernoulli generator matrix codes (BGMCs) are capacity-achieving over BIOS channels, entropy-achieving for Bernoulli sources, and also system-capacity-achieving for JSCC applications. A lower bound on the bit-error rate (BER) is derived for linear codes, which can be used to predict the error floors and hence serves as a simple tool to design the JSCC system. Numerical results show that the convolutional LDGM codes perform well in the waterfall region and match well with the derived error floors, which can be lowered down if required by simply increasing the encoding memory.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

Tensors, i.e., multi-linear functions, are a fundamental building block of machine learning algorithms. In order to train on large data-sets, it is common practice to distribute the computation amongst workers. However, stragglers and other faults can severely impact the performance and overall training time. A novel strategy to mitigate these failures is the use of coded computation. We introduce a new metric for analysis called the typical recovery threshold, which focuses on the most likely event and provide a novel construction of distributed coded tensor operations which are optimal with this measure. We show that our general framework encompasses many other computational schemes and metrics as a special case. In particular, we prove that the recovery threshold and the tensor rank can be recovered as a special case of the typical recovery threshold when the probability of noise, i.e., a fault, is equal to zero, thereby providing a noisy generalization of noiseless computation as a serendipitous result. Far from being a purely theoretical construction, these definitions lead us to practical random code constructions, i.e., locally random p-adic alloy codes, which are optimal with respect to the measures. We analyze experiments conducted on Amazon EC2 and establish that they are faster and more numerically stable than many other benchmark computation schemes in practice, as is predicted by theory.

The conventional room geometry blind inference techniques with acoustic signals are conducted based on the prior knowledge of the environment, such as the room impulse response (RIR) or the sound source position, which will limit its application under known scenarios. To solve this problem, we have proposed a room geometry reconstruction method in this paper by using the geometric relation between the direct signal and first-order reflections. In addition to the information of the compact microphone array itself, this method does not need any precognition of the environmental parameters. Besides, the learning-based DNN models are designed and used to improve the accuracy and integrity of the localization results of the direct source and first-order reflections. The direction of arrival (DOA) and time difference of arrival (TDOA) information of the direct and reflected signals are firstly estimated using the proposed DCNN and TD-CNN models, which have higher sensitivity and accuracy than the conventional methods. Then the position of the sound source is inferred by integrating the DOA, TDOA and array height using the proposed DNN model. After that, the positions of image sources and corresponding boundaries are derived based on the geometric relation. Experimental results of both simulations and real measurements verify the effectiveness and accuracy of the proposed techniques compared with the conventional methods under different reverberant environments.

Strategy iteration is a technique frequently used for two-player games in order to determine the winner or compute payoffs, but to the best of our knowledge no general framework for strategy iteration has been considered. Inspired by previous work on simple stochastic games, we propose a general formalisation of strategy iteration for solving least fixpoint equations over a suitable class of complete lattices, based on MV-chains. We devise algorithms that can be used for non-expansive fixpoint functions represented as so-called min-, respectively, max-decompositions. Correspondingly, we develop two different techniques: strategy iteration from above, which has to solve the problem that iteration might reach a fixpoint that is not the least, and from below, which is algorithmically simpler, but requires a more involved correctness argument. We apply our method to solve energy games and compute behavioural metrics for probabilistic automata.

Federated learning~(FL) has recently attracted increasing attention from academia and industry, with the ultimate goal of achieving collaborative training under privacy and communication constraints. Existing iterative model averaging based FL algorithms require a large number of communication rounds to obtain a well-performed model due to extremely unbalanced and non-i.i.d data partitioning among different clients. Thus, we propose FedDM to build the global training objective from multiple local surrogate functions, which enables the server to gain a more global view of the loss landscape. In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data through distribution matching. FedDM reduces communication rounds and improves model quality by transmitting more informative and smaller synthesized data compared with unwieldy model weights. We conduct extensive experiments on three image classification datasets, and results show that our method can outperform other FL counterparts in terms of efficiency and model performance. Moreover, we demonstrate that FedDM can be adapted to preserve differential privacy with Gaussian mechanism and train a better model under the same privacy budget.

In a desired environmental protection system, groundwater may not be excluded. In addition to the problem of over-exploitation, in total disagreement with the concept of sustainable development, another not negligible issue concerns the groundwater contamination. Mainly, this aspect is due to intensive agricultural activities or industrialized areas. In literature, several papers have dealt with transport problem, especially for inverse problems in which the release history or the source location are identified. The innovative aim of the paper is to develop a data-driven model that is able to analyze multiple scenarios, even strongly non-linear, in order to solve forward and inverse transport problems, preserving the reliability of the results and reducing the uncertainty. Furthermore, this tool has the characteristic of providing extremely fast responses, essential to identify remediation strategies immediately. The advantages produced by the model were compared with literature studies. In this regard, a feedforward artificial neural network, which has been trained to handle different cases, represents the data-driven model. Firstly, to identify the concentration of the pollutant at specific observation points in the study area (forward problem); secondly, to deal with inverse problems identifying the release history at known source location; then, in case of one contaminant source, identifying the release history and, at the same time, the location of the source in a specific sub-domain of the investigated area. At last, the observation error is investigated and estimated. The results are satisfactorily achieved, highlighting the capability of the ANN to deal with multiple scenarios by approximating nonlinear functions without the physical point of view that describes the phenomenon, providing reliable results, with very low computational burden and uncertainty.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

北京阿比特科技有限公司