亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a new class of splitting methods to solve the stochastic Langevin equation, which can simultaneously preserve the ergodicity and exponential integrability of the original equation. The central idea is to extract a stochastic subsystem that possesses the strict dissipation from the original equation, which is inspired by the inheritance of the Lyapunov structure for obtaining the ergodicity. We prove that the exponential moment of the numerical solution is bounded, thus validating the exponential integrability of the proposed methods. Further, we show that under moderate verifiable conditions, the methods have the first-order convergence in both strong and weak senses, and we present several concrete splitting schemes based on the methods. The splitting strategy of methods can be readily extended to construct conformal symplectic methods and high-order methods that preserve both the ergodicity and the exponential integrability, as demonstrated in numerical experiments. Our numerical experiments also show that the proposed methods have good performance in the long-time simulation.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

In this work, we present a novel variant of the stochastic gradient descent method termed as iteratively regularized stochastic gradient descent (IRSGD) method to solve nonlinear ill-posed problems in Hilbert spaces. Under standard assumptions, we demonstrate that the mean square iteration error of the method converges to zero for exact data. In the presence of noisy data, we first propose a heuristic parameter choice rule (HPCR) based on the method suggested by Hanke and Raus, and then apply the IRSGD method in combination with HPCR. Precisely, HPCR selects the regularization parameter without requiring any a-priori knowledge of the noise level. We show that the method terminates in finitely many steps in case of noisy data and has regularizing features. Further, we discuss the convergence rates of the method using well-known source and other related conditions under HPCR as well as discrepancy principle. To the best of our knowledge, this is the first work that establishes both the regularization properties and convergence rates of a stochastic gradient method using a heuristic type rule in the setting of infinite-dimensional Hilbert spaces. Finally, we provide the numerical experiments to showcase the practical efficacy of the proposed method.

Under a multinormal distribution with an arbitrary unknown covariance matrix, the main purpose of this paper is to propose a framework to achieve the goal of reconciliation of Bayesian, frequentist, and Fisher's reporting $p$-values, Neyman-Pearson's optimal theory and Wald's decision theory for the problems of testing mean against restricted alternatives (closed convex cones). To proceed, the tests constructed via the likelihood ratio (LR) and the union-intersection (UI) principles are studied. For the problems of testing against restricted alternatives, first, we show that the LRT and the UIT are not the proper Bayes tests, however, they are shown to be the integrated LRT and the integrated UIT, respectively. For the problem of testing against the positive orthant space alternative, both the null distributions of the LRT and the UIT depend on the unknown nuisance covariance matrix. Hence we have difficulty adopting Fisher's approach to reporting $p$-values. On the other hand, according to the definition of the level of significance, both the LRT and the UIT are shown to be power-dominated by the corresponding LRT and UIT for testing against the half-space alternative, respectively. Hence, both the LRT and the UIT are $\alpha$-inadmissible, these results are against the common statistical sense. Neither Fisher's approach of reporting $p$-values alone nor Neyman-Pearson's optimal theory for power function alone is a satisfactory criterion for evaluating the performance of tests. Wald's decision theory via $d$-admissibility may shed light on resolving these challenging issues of imposing the balance between type 1 error and power.

In this manuscript, we study the stability of the origin for the multivariate geometric Brownian motion. More precisely, under suitable sufficient conditions, we construct a Lyapunov function such that the origin of the multivariate geometric Brownian motion is globally asymptotically stable in probability. Moreover, we show that such conditions can be rewritten as a Bilinear Matrix Inequality (BMI) feasibility problem. We stress that no commutativity relations between the drift matrix and the noise dispersion matrices are assumed and therefore the so-called Magnus representation of the solution of the multivariate geometric Brownian motion is complicated. In addition, we exemplify our method in numerous specific models from the literature such as random linear oscillators, satellite dynamics, inertia systems, diagonal and non-diagonal noise systems, cancer self-remission and smoking.

In this study, we consider a class of linear matroid interdiction problems, where the feasible sets for the upper-level decision-maker (referred to as a leader) and the lower-level decision-maker (referred to as a follower) are induced by two distinct partition matroids with a common weighted ground set. Unlike classical network interdiction models where the leader is subject to a single budget constraint, in our setting, both the leader and the follower are subject to several independent capacity constraints and engage in a zero-sum game. While the problem of finding a maximum weight independent set in a partition matroid is known to be polynomially solvable, we prove that the considered bilevel problem is $NP$-hard even when the weights of ground elements are all binary. On a positive note, it is revealed that, if the number of capacity constraints is fixed for either the leader or the follower, then the considered class of bilevel problems admits several polynomial-time solution schemes. Specifically, these schemes are based on a single-level dual reformulation, a dynamic programming-based approach, and a greedy algorithm for the leader.

Many articles have recently been devoted to Mahler equations, partly because of their links with other branches of mathematics such as automata theory. Hahn series (a generalization of the Puiseux series allowing arbitrary exponents of the indeterminate as long as the set that supports them is well-ordered) play a central role in the theory of Mahler equations. In this paper, we address the following fundamental question: is there an algorithm to calculate the Hahn series solutions of a given linear Mahler equation? What makes this question interesting is the fact that the Hahn series appearing in this context can have complicated supports with infinitely many accumulation points. Our (positive) answer to the above question involves among other things the construction of a computable well-ordered receptacle for the supports of the potential Hahn series solutions.

Problems in probability theory prove to be one of the most challenging for students. Here, we formulate and discuss four related problems in probability theory that proved difficult for first to fourth-year undergraduate students whose first language was not English. These examples emphasize how crucial it is to understand the conditions and requirements of the problems precisely before starting to solve them. We discuss the solutions to those problems in detail, complement them with numerical estimations, and link the conditions in the problems to the logical statements in Python programming language. We also tested two widely used chatbots (GPT-4o and Claude 3.5 Sonnet) by checking their responses to these problems.

This paper investigates the pathwise uniform convergence in probability of fully discrete finite-element approximations for the two-dimensional stochastic Navier-Stokes equations with multiplicative noise, subject to no-slip boundary conditions. Assuming Lipschitz-continuous diffusion coefficients and under mild conditions on the initial data, we establish that the full discretization achieves linear convergence in space and nearly half-order convergence in time.

We show that one-way functions exist if and only there exists an efficient distribution relative to which almost-optimal compression is hard on average. The result is obtained by combining a theorem of Ilango, Ren, and Santhanam and one by Bauwens and Zimand.

In this study, we present an optimal implicit algorithm specifically designed to accurately solve the multi-species nonlinear 0D-2V axisymmetric Fokker-Planck-Rosenbluth (FPR) collision equation while preserving mass, momentum, and energy. Our approach relies on the utilization of nonlinear Shkarofsky's formula of FPR (FPRS) collision operator in the spherical-polar coordinate. The key innovation lies in the introduction of a new function named King, with the adoption of the Legendre polynomial expansion for the angular coordinate and King function expansion for the speed coordinate. The Legendre polynomial expansion will converge exponentially and the King method, a moment convergence algorithm, could ensure the conservation with high precision in discrete form. Additionally, post-step projection onto manifolds is employed to exactly enforce symmetries of the collision operators. Through solving several typical problems across various nonequilibrium configurations, we demonstrate the high accuracy and superior performance of the presented algorithm for weakly anisotropic plasmas.

We carry out a stability and convergence analysis for the fully discrete scheme obtained by combining a finite or virtual element spatial discretization with the upwind-discontinuous Galerkin time-stepping applied to the time-dependent advection-diffusion equation. A space-time streamline-upwind Petrov-Galerkin term is used to stabilize the method. More precisely, we show that the method is inf-sup stable with constant independent of the diffusion coefficient, which ensures the robustness of the method in the convection- and diffusion-dominated regimes. Moreover, we prove optimal convergence rates in both regimes for the error in the energy norm. An important feature of the presented analysis is the control in the full $L^2(0,T;L^2(\Omega))$ norm without the need of introducing an artificial reaction term in the model. We finally present some numerical experiments in $(3 + 1)$-dimensions that validate our theoretical results.

北京阿比特科技有限公司