Modern language models (LMs) can learn to perform new tasks in different ways: in instruction following, the target task is described explicitly in natural language; in few-shot prompting, the task is specified implicitly with a small number of examples; in instruction inference, LMs are presented with in-context examples and are then prompted to generate a natural language task description before making predictions. Each of these procedures may be thought of as invoking a different form of reasoning: instruction following involves deductive reasoning, few-shot prompting involves inductive reasoning, and instruction inference involves abductive reasoning. How do these different capabilities relate? Across four LMs (from the gpt and llama families) and two learning problems (involving arithmetic functions and machine translation) we find a strong dissociation between the different types of reasoning: LMs can sometimes learn effectively from few-shot prompts even when they are unable to explain their own prediction rules; conversely, they sometimes infer useful task descriptions while completely failing to learn from human-generated descriptions of the same task. Our results highlight the non-systematic nature of reasoning even in some of today's largest LMs, and underscore the fact that very different learning mechanisms may be invoked by seemingly similar prompting procedures.
Large language models (LLMs) have catalyzed a paradigm shift in natural language processing, yet their limited controllability poses a significant challenge for downstream applications. We aim to address this by drawing inspiration from the neural mechanisms of the human brain, specifically Broca's and Wernicke's areas, which are crucial for language generation and comprehension, respectively. In particular, Broca's area receives cognitive decision signals from Wernicke's area, treating the language generation as an intricate decision-making process, which differs from the fully auto-regressive language generation of existing LLMs. In a similar vein, our proposed system, the BWArea model, conceptualizes language generation as a decision-making task. This model has three components: a language world model, an inverse dynamics model, and a cognitive policy. Like Wernicke's area, the inverse dynamics model is designed to deduce the underlying cognitive intentions, or latent actions, behind each token. The BWArea model is amenable to both pre-training and fine-tuning like existing LLMs. With 30B clean pre-training tokens, we have trained a BWArea model, which achieves competitive performance with LLMs of equal size (1B parameters). Unlike fully auto-regressive LLMs, its pre-training performance does not degenerate if dirty data unintentionally appears. This shows the advantage of a decomposed structure of BWArea model in reducing efforts in laborious data selection and labeling. Finally, we reveal that the BWArea model offers enhanced controllability via fine-tuning the cognitive policy with downstream reward metrics, thereby facilitating alignment with greater simplicity. On 9 out of 10 tasks from two suites, TextWorld and BigBench Hard, our method shows superior performance to auto-regressive LLMs.
Large language models (LLMs) significantly enhance the performance of various applications, but they are computationally intensive and energy-demanding. This makes it challenging to deploy them on devices with limited resources, such as personal computers and mobile/wearable devices, and results in substantial inference costs in resource-rich environments like cloud servers. To extend the use of LLMs, we introduce a low-rank decomposition approach to effectively compress these models, tailored to the requirements of specific applications. We observe that LLMs pretrained on general datasets contain many redundant components not needed for particular applications. Our method focuses on identifying and removing these redundant parts, retaining only the necessary elements for the target applications. Specifically, we represent the weight matrices of LLMs as a linear combination of base components. We then prune the irrelevant bases and enhance the model with new bases beneficial for specific applications. Deep compression results on the Llama 2-7b and -13B models, conducted on target applications including mathematical reasoning and code generation, show that our method significantly reduces model size while maintaining comparable accuracy to state-of-the-art low-rank compression techniques.
Nearly every recent image synthesis approach, including diffusion, masked-token prediction, and next-token prediction, uses a Transformer network architecture. Despite this common backbone, there has been no direct, compute controlled comparison of how these approaches affect performance and efficiency. We analyze the scalability of each approach through the lens of compute budget measured in FLOPs. We find that token prediction methods, led by next-token prediction, significantly outperform diffusion on prompt following. On image quality, while next-token prediction initially performs better, scaling trends suggest it is eventually matched by diffusion. We compare the inference compute efficiency of each approach and find that next token prediction is by far the most efficient. Based on our findings we recommend diffusion for applications targeting image quality and low latency; and next-token prediction when prompt following or throughput is more important.
We propose the Data Contamination Quiz (DCQ), a simple and effective approach to detect data contamination in large language models (LLMs) and estimate the amount of it. Specifically, we frame data contamination detection as a series of multiple-choice questions and devise a quiz format wherein three perturbed versions of each subsampled instance from a specific dataset partition (e.g., GSM8k test set) are created. These changes only include word-level perturbations. The generated perturbations, along with the original dataset instance, form the options in the DCQ, with an extra option accommodating the possibility of selecting none of the provided options. Given that the only distinguishing signal among the options is the exact wording with respect to the original dataset instance, an LLM, when tasked with identifying the original dataset instance, gravitates towards selecting the original one if it has been exposed to it in its pre-training phase -- a trait intrinsic to LLMs. While accounting for positional biases in LLMs, the quiz performance reveals the contamination level for the model being examined with the dataset partition to which the quiz pertains. Applied to various datasets with GPT-4 and GPT-3.5, our findings -- while fully lacking access to pre-training data and model parameters -- suggest that DCQ achieves state-of-the-art results and uncovers greater contamination/memorization levels compared to existing methods and proficiently bypasses more safety filters, especially those set to avoid generating copyrighted contents.
Large language models (LLMs) have shown impressive emergent abilities in a wide range of tasks, but still face challenges in handling complex reasoning problems. Previous works like chain-of-thought (CoT) and tree-of-thoughts (ToT) have predominately focused on enhancing accuracy, but overlook the rapidly increasing token cost, which could be particularly problematic for open-ended real-world tasks with huge solution spaces. Motivated by the dual process theory of human cognition, we propose "Synergy of Thoughts" (SoT) to unleash the synergistic potential of hybrid LLMs for efficient reasoning. By default, SoT uses smaller-scale language models to generate multiple low-cost reasoning thoughts, which resembles the parallel intuitions produced by System 1. If these intuitions exhibit conflicts, SoT will invoke the reflective reasoning of scaled-up language models to emulate the intervention of System 2, which will override the intuitive thoughts and rectify the reasoning process. This framework is model-agnostic and training-free, which can be flexibly implemented with various off-the-shelf LLMs. Experiments on six representative reasoning tasks show that SoT substantially reduces the token cost by 38.3%-75.1%, and simultaneously achieves state-of-the-art reasoning accuracy and solution diversity. Notably, the average token cost reduction on open-ended tasks reaches up to 69.1%. Code repo with all prompts will be released upon publication.
Distribution shift is a common situation in machine learning tasks, where the data used for training a model is different from the data the model is applied to in the real world. This issue arises across multiple technical settings: from standard prediction tasks, to time-series forecasting, and to more recent applications of large language models (LLMs). This mismatch can lead to performance reductions, and can be related to a multiplicity of factors: sampling issues and non-representative data, changes in the environment or policies, or the emergence of previously unseen scenarios. This brief focuses on the definition and detection of distribution shifts in educational settings. We focus on standard prediction problems, where the task is to learn a model that takes in a series of input (predictors) $X=(x_1,x_2,...,x_m)$ and produces an output $Y=f(X)$.
Recent large language models (LLMs) have witnessed significant advancement in various tasks, including mathematical reasoning and theorem proving. As these two tasks require strict and formal multi-step inference, they are appealing domains for exploring the reasoning ability of LLMs but still face important challenges. Previous studies such as Chain-of-Thought (CoT) have revealed the effectiveness of intermediate steps guidance. However, such step-wise annotation requires heavy labor, leading to insufficient training steps for current benchmarks. To fill this gap, this work introduces MUSTARD, a data generation framework that masters uniform synthesis of theorem and proof data of high quality and diversity. MUSTARD synthesizes data in three stages: (1) It samples a few mathematical concept seeds as the problem category. (2) Then, it prompts a generative language model with the sampled concepts to obtain both the problems and their step-wise formal solutions. (3) Lastly, the framework utilizes a proof assistant (e.g., Lean Prover) to filter the valid proofs. With the proposed MUSTARD, we present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points. Each data point contains an informal statement, an informal proof, and a translated formal proof that passes the prover validation. We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data. We further apply the MUSTARDSAUCE for fine-tuning smaller language models. The fine-tuned Llama 2-7B achieves a 15.41% average relative performance gain in automated theorem proving, and 8.18% in math word problems. Codes and data are available at //github.com/Eleanor-H/MUSTARD.
Large language models (LLMs) exhibit superior performance on various natural language tasks, but they are susceptible to issues stemming from outdated data and domain-specific limitations. In order to address these challenges, researchers have pursued two primary strategies, knowledge editing and retrieval augmentation, to enhance LLMs by incorporating external information from different aspects. Nevertheless, there is still a notable absence of a comprehensive survey. In this paper, we propose a review to discuss the trends in integration of knowledge and large language models, including taxonomy of methods, benchmarks, and applications. In addition, we conduct an in-depth analysis of different methods and point out potential research directions in the future. We hope this survey offers the community quick access and a comprehensive overview of this research area, with the intention of inspiring future research endeavors.
The emergence of large language models (LLMs) has marked a significant breakthrough in natural language processing (NLP), leading to remarkable advancements in text understanding and generation. Nevertheless, alongside these strides, LLMs exhibit a critical tendency to produce hallucinations, resulting in content that is inconsistent with real-world facts or user inputs. This phenomenon poses substantial challenges to their practical deployment and raises concerns over the reliability of LLMs in real-world scenarios, which attracts increasing attention to detect and mitigate these hallucinations. In this survey, we aim to provide a thorough and in-depth overview of recent advances in the field of LLM hallucinations. We begin with an innovative taxonomy of LLM hallucinations, then delve into the factors contributing to hallucinations. Subsequently, we present a comprehensive overview of hallucination detection methods and benchmarks. Additionally, representative approaches designed to mitigate hallucinations are introduced accordingly. Finally, we analyze the challenges that highlight the current limitations and formulate open questions, aiming to delineate pathways for future research on hallucinations in LLMs.
Recommendation systems have become popular and effective tools to help users discover their interesting items by modeling the user preference and item property based on implicit interactions (e.g., purchasing and clicking). Humans perceive the world by processing the modality signals (e.g., audio, text and image), which inspired researchers to build a recommender system that can understand and interpret data from different modalities. Those models could capture the hidden relations between different modalities and possibly recover the complementary information which can not be captured by a uni-modal approach and implicit interactions. The goal of this survey is to provide a comprehensive review of the recent research efforts on the multimodal recommendation. Specifically, it shows a clear pipeline with commonly used techniques in each step and classifies the models by the methods used. Additionally, a code framework has been designed that helps researchers new in this area to understand the principles and techniques, and easily runs the SOTA models. Our framework is located at: //github.com/enoche/MMRec