亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The factuality of large language model (LLMs) tends to decay over time since events posterior to their training are "unknown" to them. One way to keep models up-to-date could be factual update: the task of inserting, replacing, or removing certain simple (atomic) facts within the model. To study this task, we present WikiFactDiff, a dataset that describes the evolution of factual knowledge between two dates as a collection of simple facts divided into three categories: new, obsolete, and static. We describe several update scenarios arising from various combinations of these three types of basic update. The facts are represented by subject-relation-object triples; indeed, WikiFactDiff was constructed by comparing the state of the Wikidata knowledge base at 4 January 2021 and 27 February 2023. Those fact are accompanied by verbalization templates and cloze tests that enable running update algorithms and their evaluation metrics. Contrary to other datasets, such as zsRE and CounterFact, WikiFactDiff constitutes a realistic update setting that involves various update scenarios, including replacements, archival, and new entity insertions. We also present an evaluation of existing update algorithms on WikiFactDiff.

相關內容

通過學習、實踐或探索所(suo)獲得的認識、判斷或技能。

The booming of Internet-of-Things (IoT) is expected to provide more intelligent and reliable communication services for higher network coverage, massive connectivity, and low-cost solutions for 6G services. However, frequent charging and battery replacement of these massive IoT devices brings a series of challenges. Zero energy devices, which rely on energy-harvesting technologies and can operate without battery replacement or charging, play a pivotal role in facilitating the massive use of IoT devices. In order to enable reliable communications of such low-power devices, Manchester-coded on-off keying (OOK) modulation and non-coherent detections are attractive techniques due to their energy efficiency, robustness in noisy environments, and simplicity in receiver design. Moreover, to extend their communication range, employing channel coding along with enhanced detection schemes is crucial. In this paper, a novel soft-decision decoder is designed for OOK-based low-power receivers to enhance their detection performance. In addition, exact closed-form expressions and two simplified approximations are derived for the log-likelihood ratio (LLR), an essential metric for soft decoding. Numerical results demonstrate the significant coverage gain achieved through soft decoding for convolutional code.

Large Vision-Language models (VLMs) have demonstrated strong reasoning capabilities in tasks requiring a fine-grained understanding of literal images and text, such as visual question-answering or visual entailment. However, there has been little exploration of these models' capabilities when presented with images and captions containing figurative phenomena such as metaphors or humor, the meaning of which is often implicit. To close this gap, we propose a new task and a high-quality dataset: Visual Figurative Language Understanding with Textual Explanations (V-FLUTE). We frame the visual figurative language understanding problem as an explainable visual entailment task, where the model has to predict whether the image (premise) entails a claim (hypothesis) and justify the predicted label with a textual explanation. Using a human-AI collaboration framework, we build a high-quality dataset, V-FLUTE, that contains 6,027 <image, claim, label, explanation> instances spanning five diverse multimodal figurative phenomena: metaphors, similes, idioms, sarcasm, and humor. The figurative phenomena can be present either in the image, the caption, or both. We further conduct both automatic and human evaluations to assess current VLMs' capabilities in understanding figurative phenomena.

Recent transformer-based ASR models have achieved word-error rates (WER) below 4%, surpassing human annotator accuracy, yet they demand extensive server resources, contributing to significant carbon footprints. The traditional server-based architecture of ASR also presents privacy concerns, alongside reliability and latency issues due to network dependencies. In contrast, on-device (edge) ASR enhances privacy, boosts performance, and promotes sustainability by effectively balancing energy use and accuracy for specific applications. This study examines the effects of quantization, memory demands, and energy consumption on the performance of various ASR model inference on the NVIDIA Jetson Orin Nano. By analyzing WER and transcription speed across models using FP32, FP16, and INT8 quantization on clean and noisy datasets, we highlight the crucial trade-offs between accuracy, speeds, quantization, energy efficiency, and memory needs. We found that changing precision from fp32 to fp16 halves the energy consumption for audio transcription across different models, with minimal performance degradation. A larger model size and number of parameters neither guarantees better resilience to noise, nor predicts the energy consumption for a given transcription load. These, along with several other findings offer novel insights for optimizing ASR systems within energy- and memory-limited environments, crucial for the development of efficient on-device ASR solutions. The code and input data needed to reproduce the results in this article are open sourced are available on [//github.com/zzadiues3338/ASR-energy-jetson].

Traditional language models operate autoregressively, i.e., they predict one token at a time. Rapid explosion in model sizes has resulted in high inference times. In this work, we propose DynaMo, a suite of multi-token prediction language models that reduce net inference times. Our models $\textit{dynamically}$ predict multiple tokens based on their confidence in the predicted joint probability distribution. We propose a lightweight technique to train these models, leveraging the weights of traditional autoregressive counterparts. Moreover, we propose novel ways to enhance the estimated joint probability to improve text generation quality, namely co-occurrence weighted masking and adaptive thresholding. We also propose systematic qualitative and quantitative methods to rigorously test the quality of generated text for non-autoregressive generation. One of the models in our suite, DynaMo-7.3B-T3, achieves same-quality generated text as the baseline (Pythia-6.9B) while achieving 2.57$\times$ speed-up with only 5.87% and 2.67% parameter and training time overheads, respectively.

Large language models (LLMs) have transformed the landscape of language processing, yet struggle with significant challenges in terms of security, privacy, and the generation of seemingly coherent but factually inaccurate outputs, commonly referred to as hallucinations. Among these challenges, one particularly pressing issue is Fact-Conflicting Hallucination (FCH), where LLMs generate content that directly contradicts established facts. Tackling FCH poses a formidable task due to two primary obstacles: Firstly, automating the construction and updating of benchmark datasets is challenging, as current methods rely on static benchmarks that don't cover the diverse range of FCH scenarios. Secondly, validating LLM outputs' reasoning process is inherently complex, especially with intricate logical relations involved. In addressing these obstacles, we propose an innovative approach leveraging logic programming to enhance metamorphic testing for detecting Fact-Conflicting Hallucinations (FCH). Our method gathers data from sources like Wikipedia, expands it with logical reasoning to create diverse test cases, assesses LLMs through structured prompts, and validates their coherence using semantic-aware assessment mechanisms. Our method generates test cases and detects hallucinations across six different LLMs spanning nine domains, revealing hallucination rates ranging from 24.7% to 59.8%. Key observations indicate that LLMs encounter challenges, particularly with temporal concepts, handling out-of-distribution knowledge, and exhibiting deficiencies in logical reasoning capabilities. The outcomes underscore the efficacy of logic-based test cases generated by our tool in both triggering and identifying hallucinations. These findings underscore the imperative for ongoing collaborative endeavors within the community to detect and address LLM hallucinations.

Recent advancements in language models have demonstrated remarkable improvements in various natural language processing (NLP) tasks such as web navigation. Supervised learning (SL) approaches have achieved impressive performance while utilizing significantly less training data compared to previous methods. However, these SL-based models fall short when compared to reinforcement learning (RL) approaches, which have shown superior results. In this paper, we propose a novel approach that combines SL and RL techniques over the MiniWoB benchmark to leverage the strengths of both methods. We also address a critical limitation in previous models' understanding of HTML content, revealing a tendency to memorize target elements rather than comprehend the underlying structure. To rectify this, we propose methods to enhance true understanding and present a new baseline of results. Our experiments demonstrate that our approach outperforms previous SL methods on certain tasks using less data and narrows the performance gap with RL models, achieving 43.58\% average accuracy in SL and 36.69\% when combined with a multimodal RL approach. This study sets a new direction for future web navigation and offers insights into the limitations and potential of language modeling for computer tasks.

Large language models (LLMs) suffer from low efficiency as the mismatch between the requirement of auto-regressive decoding and the design of most contemporary GPUs. Specifically, billions to trillions of parameters must be loaded to the GPU cache through its limited memory bandwidth for computation, but only a small batch of tokens is actually computed. Consequently, the GPU spends most of its time on memory transfer instead of computation. Recently, parallel decoding, a type of speculative decoding algorithms, is becoming more popular and has demonstrated impressive efficiency improvement in generation. It introduces extra decoding heads to large models, enabling them to predict multiple subsequent tokens simultaneously and verify these candidate continuations in a single decoding step. However, this approach deviates from the training objective of next token prediction used during pre-training, resulting in a low hit rate for candidate tokens. In this paper, we propose a new speculative decoding algorithm, Clover, which integrates sequential knowledge into the parallel decoding process. This enhancement improves the hit rate of speculators and thus boosts the overall efficiency. Clover transmits the sequential knowledge from pre-speculated tokens via the Regressive Connection, then employs an Attention Decoder to integrate these speculated tokens. Additionally, Clover incorporates an Augmenting Block that modifies the hidden states to better align with the purpose of speculative generation rather than next token prediction. The experiment results demonstrate that Clover outperforms the baseline by up to 91% on Baichuan-Small and 146% on Baichuan-Large, respectively, and exceeds the performance of the previously top-performing method, Medusa, by up to 37% on Baichuan-Small and 57% on Baichuan-Large, respectively.

The emergence of large language models (LLMs) has marked a significant breakthrough in natural language processing (NLP), leading to remarkable advancements in text understanding and generation. Nevertheless, alongside these strides, LLMs exhibit a critical tendency to produce hallucinations, resulting in content that is inconsistent with real-world facts or user inputs. This phenomenon poses substantial challenges to their practical deployment and raises concerns over the reliability of LLMs in real-world scenarios, which attracts increasing attention to detect and mitigate these hallucinations. In this survey, we aim to provide a thorough and in-depth overview of recent advances in the field of LLM hallucinations. We begin with an innovative taxonomy of LLM hallucinations, then delve into the factors contributing to hallucinations. Subsequently, we present a comprehensive overview of hallucination detection methods and benchmarks. Additionally, representative approaches designed to mitigate hallucinations are introduced accordingly. Finally, we analyze the challenges that highlight the current limitations and formulate open questions, aiming to delineate pathways for future research on hallucinations in LLMs.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

北京阿比特科技有限公司