We introduce OpenBot-Fleet, a comprehensive open-source cloud robotics system for navigation. OpenBot-Fleet uses smartphones for sensing, local compute and communication, Google Firebase for secure cloud storage and off-board compute, and a robust yet low-cost wheeled robot toact in real-world environments. The robots collect task data and upload it to the cloud where navigation policies can be learned either offline or online and can then be sent back to the robot fleet. In our experiments we distribute 72 robots to a crowd of workers who operate them in homes, and show that OpenBot-Fleet can learn robust navigation policies that generalize to unseen homes with >80% success rate. OpenBot-Fleet represents a significant step forward in cloud robotics, making it possible to deploy large continually learning robot fleets in a cost-effective and scalable manner. All materials can be found at //www.openbot.org. A video is available at //youtu.be/wiv2oaDgDi8
For Edge AI applications, deploying online learning and adaptation on resource-constrained embedded devices can deal with fast sensor-generated streams of data in changing environments. However, since maintaining low-latency and power-efficient inference is paramount at the Edge, online learning and adaptation on the device should impose minimal additional overhead for inference. With this goal in mind, we explore energy-efficient learning and adaptation on-device for streaming-data Edge AI applications using Spiking Neural Networks (SNNs), which follow the principles of brain-inspired computing, such as high-parallelism, neuron co-located memory and compute, and event-driven processing. We propose EON-1, a brain-inspired processor for near-sensor extreme edge online feature extraction, that integrates a fast online learning and adaptation algorithm. We report results of only 1% energy overhead for learning, by far the lowest overhead when compared to other SoTA solutions, while attaining comparable inference accuracy. Furthermore, we demonstrate that EON-1 is up for the challenge of low-latency processing of HD and UHD streaming video in real-time, with learning enabled.
Recent open-world 3D representation learning methods using Vision-Language Models (VLMs) to align 3D data with image-text information have shown superior 3D zero-shot performance. However, CAD-rendered images for this alignment often lack realism and texture variation, compromising alignment robustness. Moreover, the volume discrepancy between 3D and 2D pretraining datasets highlights the need for effective strategies to transfer the representational abilities of VLMs to 3D learning. In this paper, we present OpenDlign, a novel open-world 3D model using depth-aligned images generated from a diffusion model for robust multimodal alignment. These images exhibit greater texture diversity than CAD renderings due to the stochastic nature of the diffusion model. By refining the depth map projection pipeline and designing depth-specific prompts, OpenDlign leverages rich knowledge in pre-trained VLM for 3D representation learning with streamlined fine-tuning. Our experiments show that OpenDlign achieves high zero-shot and few-shot performance on diverse 3D tasks, despite only fine-tuning 6 million parameters on a limited ShapeNet dataset. In zero-shot classification, OpenDlign surpasses previous models by 8.0% on ModelNet40 and 16.4% on OmniObject3D. Additionally, using depth-aligned images for multimodal alignment consistently enhances the performance of other state-of-the-art models.
To securely transmit sensitive information into the future, Time-Lock Puzzles (TLPs) have been developed. Their applications include scheduled payments, timed commitments, e-voting, and sealed-bid auctions. Homomorphic TLP is a key variant of TLP that enables computation on puzzles from different clients. This allows a solver/server to tackle only a single puzzle encoding the computation's result. However, existing homomorphic TLPs lack support for verifying the correctness of the computation results. We address this limitation by introducing Tempora-Fusion, a TLP that allows a server to perform homomorphic linear combinations of puzzles from different clients while ensuring verification of computation correctness. This scheme avoids asymmetric-key cryptography for verification, thus paving the way for efficient implementations. We discuss our scheme's application in various domains, such as federated learning, scheduled payments in online banking, and e-voting.
Reinforcement Learning (RL) serves as a versatile framework for sequential decision-making, finding applications across diverse domains such as robotics, autonomous driving, recommendation systems, supply chain optimization, biology, mechanics, and finance. The primary objective in these applications is to maximize the average reward. Real-world scenarios often necessitate adherence to specific constraints during the learning process. This monograph focuses on the exploration of various model-based and model-free approaches for Constrained RL within the context of average reward Markov Decision Processes (MDPs). The investigation commences with an examination of model-based strategies, delving into two foundational methods - optimism in the face of uncertainty and posterior sampling. Subsequently, the discussion transitions to parametrized model-free approaches, where the primal-dual policy gradient-based algorithm is explored as a solution for constrained MDPs. The monograph provides regret guarantees and analyzes constraint violation for each of the discussed setups. For the above exploration, we assume the underlying MDP to be ergodic. Further, this monograph extends its discussion to encompass results tailored for weakly communicating MDPs, thereby broadening the scope of its findings and their relevance to a wider range of practical scenarios.
Numerous advanced Large Language Models (LLMs) now support context lengths up to 128K, and some extend to 200K. Some benchmarks in the generic domain have also followed up on evaluating long-context capabilities. In the medical domain, tasks are distinctive due to the unique contexts and need for domain expertise, necessitating further evaluation. However, despite the frequent presence of long texts in medical scenarios, evaluation benchmarks of long-context capabilities for LLMs in this field are still rare. In this paper, we propose MedOdyssey, the first medical long-context benchmark with seven length levels ranging from 4K to 200K tokens. MedOdyssey consists of two primary components: the medical-context "needles in a haystack" task and a series of tasks specific to medical applications, together comprising 10 datasets. The first component includes challenges such as counter-intuitive reasoning and novel (unknown) facts injection to mitigate knowledge leakage and data contamination of LLMs. The second component confronts the challenge of requiring professional medical expertise. Especially, we design the ``Maximum Identical Context'' principle to improve fairness by guaranteeing that different LLMs observe as many identical contexts as possible. Our experiment evaluates advanced proprietary and open-source LLMs tailored for processing long contexts and presents detailed performance analyses. This highlights that LLMs still face challenges and need for further research in this area. Our code and data are released in the repository: \url{//github.com/JOHNNY-fans/MedOdyssey.}
We introduce Xmodel-VLM, a cutting-edge multimodal vision language model. It is designed for efficient deployment on consumer GPU servers. Our work directly confronts a pivotal industry issue by grappling with the prohibitive service costs that hinder the broad adoption of large-scale multimodal systems. Through rigorous training, we have developed a 1B-scale language model from the ground up, employing the LLaVA paradigm for modal alignment. The result, which we call Xmodel-VLM, is a lightweight yet powerful multimodal vision language model. Extensive testing across numerous classic multimodal benchmarks has revealed that despite its smaller size and faster execution, Xmodel-VLM delivers performance comparable to that of larger models. Our model checkpoints and code are publicly available on GitHub at //github.com/XiaoduoAILab/XmodelVLM.
Recent advancements in Large Multimodal Models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. Addressing these issues, we introduce a novel dataset format, PIN (Paired and INterleaved multimodal documents), designed to significantly improve both the depth and breadth of multimodal training. The PIN format is built on three foundational principles: knowledge intensity, scalability, and support for diverse training modalities. This innovative format combines markdown files and comprehensive images to enrich training data with a dense knowledge structure and versatile training strategies. We present PIN-14M, an open-source dataset comprising 14 million samples derived from a diverse range of Chinese and English sources, tailored to include complex web and scientific content. This dataset is constructed meticulously to ensure data quality and ethical integrity, aiming to facilitate advanced training strategies and improve model robustness against common multimodal training pitfalls. Our initial results, forming the basis of this technical report, suggest significant potential for the PIN format in refining LMM performance, with plans for future expansions and detailed evaluations of its impact on model capabilities.
We present ROSfs, a novel user-level file system for the Robot Operating System (ROS). ROSfs interprets a robot file as a group of sub-files, with each having a distinct label. ROSfs applies a time index structure to enhance the flexible data query while the data file is under modification. It provides multi-robot systems (MRS) with prompt cross-robot data acquisition and collaboration. We implemented a ROSfs prototype and integrated it into a mainstream ROS platform. We then applied and evaluated ROSfs on real-world UAVs and data servers. Evaluation results show that compared with traditional ROS storage methods, ROSfs improves the offline query performance by up to 129x and reduces inter-robot online data query latency under a wireless network by up to 7x.
Due to the continuously improving capabilities of mobile edges, recommender systems start to deploy models on edges to alleviate network congestion caused by frequent mobile requests. Several studies have leveraged the proximity of edge-side to real-time data, fine-tuning them to create edge-specific models. Despite their significant progress, these methods require substantial on-edge computational resources and frequent network transfers to keep the model up to date. The former may disrupt other processes on the edge to acquire computational resources, while the latter consumes network bandwidth, leading to a decrease in user satisfaction. In response to these challenges, we propose a customizeD slImming framework for incompatiblE neTworks(DIET). DIET deploys the same generic backbone (potentially incompatible for a specific edge) to all devices. To minimize frequent bandwidth usage and storage consumption in personalization, DIET tailors specific subnets for each edge based on its past interactions, learning to generate slimming subnets(diets) within incompatible networks for efficient transfer. It also takes the inter-layer relationships into account, empirically reducing inference time while obtaining more suitable diets. We further explore the repeated modules within networks and propose a more storage-efficient framework, DIETING, which utilizes a single layer of parameters to represent the entire network, achieving comparably excellent performance. The experiments across four state-of-the-art datasets and two widely used models demonstrate the superior accuracy in recommendation and efficiency in transmission and storage of our framework.
Point cloud-based large scale place recognition is fundamental for many applications like Simultaneous Localization and Mapping (SLAM). Although many models have been proposed and have achieved good performance by learning short-range local features, long-range contextual properties have often been neglected. Moreover, the model size has also become a bottleneck for their wide applications. To overcome these challenges, we propose a super light-weight network model termed SVT-Net for large scale place recognition. Specifically, on top of the highly efficient 3D Sparse Convolution (SP-Conv), an Atom-based Sparse Voxel Transformer (ASVT) and a Cluster-based Sparse Voxel Transformer (CSVT) are proposed to learn both short-range local features and long-range contextual features in this model. Consisting of ASVT and CSVT, SVT-Net can achieve state-of-the-art on benchmark datasets in terms of both accuracy and speed with a super-light model size (0.9M). Meanwhile, two simplified versions of SVT-Net are introduced, which also achieve state-of-the-art and further reduce the model size to 0.8M and 0.4M respectively.