Drones have been widely utilized in various fields, but the number of drones being used illegally and for hazardous purposes has increased recently. To prevent those illegal drones, in this work, we propose a novel framework for reconstructing 3D trajectories of drones using a single camera. By leveraging calibrated cameras, we exploit the relationship between 2D and 3D spaces. We automatically track the drones in 2D images using the drone tracker and estimate their 2D rotations. By combining the estimated 2D drone positions with their actual length information and camera parameters, we geometrically infer the 3D trajectories of the drones. To address the lack of public drone datasets, we also create synthetic 2D and 3D drone datasets. The experimental results show that the proposed methods accurately reconstruct drone trajectories in 3D space, and demonstrate the potential of our framework for single camera-based surveillance systems.
Deception, which includes leading cyber-attackers astray with false information, has shown to be an effective method of thwarting cyber-attacks. There has been little investigation of the effect of probing action costs on adversarial decision-making, despite earlier studies on deception in cybersecurity focusing primarily on variables like network size and the percentage of honeypots utilized in games. Understanding human decision-making when prompted with choices of various costs is essential in many areas such as in cyber security. In this paper, we will use a deception game (DG) to examine different costs of probing on adversarial decisions. To achieve this we utilized an IBLT model and a delayed feedback mechanism to mimic knowledge of human actions. Our results were taken from an even split of deception and no deception to compare each influence. It was concluded that probing was slightly taken less as the cost of probing increased. The proportion of attacks stayed relatively the same as the cost of probing increased. Although a constant cost led to a slight decrease in attacks. Overall, our results concluded that the different probing costs do not have an impact on the proportion of attacks whereas it had a slightly noticeable impact on the proportion of probing.
Quantiles are useful characteristics of random variables that can provide substantial information on distributions compared with commonly used summary statistics such as means. In this paper, we propose a Bayesian quantile trend filtering method to estimate non-stationary trend of quantiles. We introduce general shrinkage priors to induce locally adaptive Bayesian inference on trends and mixture representation of the asymmetric Laplace likelihood. To quickly compute the posterior distribution, we develop calibrated mean-field variational approximations to guarantee that the frequentist coverage of credible intervals obtained from the approximated posterior is a specified nominal level. Simulation and empirical studies show that the proposed algorithm is computationally much more efficient than the Gibbs sampler and tends to provide stable inference results, especially for high/low quantiles.
Child pornography represents a severe form of exploitation and victimization of children, leaving the victims with emotional and physical trauma. In this study, we aim to analyze local patterns of child pornography consumption in 20 metropolitan regions of France using fine-grained mobile traffic data of Tor network-related web services. We estimate that approx. 3.3 % of Tor mobile download traffic observed in France is linked to the consumption of child sexual abuse materials by correlating it with local-level temporal porn consumption patterns. This compares to 0.2 % of what we conservatively estimate to be the share of child pornographic content in global Tor traffic. In line with existing literature on the link between sexual child abuse and the consumption of image-based content thereof, we observe a positive and statistically significant effect of our child pornography consumption estimates on the reported number of victims of sexual violence and vice versa across 1341 French communes, which validates our findings, after controlling for a set of spatial and non-spatial features including socio-demographic characteristics, voting behaviour, nearby points of interest and Google Trends queries. While this is a first, exploratory attempt to look at child pornography from a spatial epidemiological angle, we believe this research provides public health officials with valuable information to prioritize target areas for public awareness campaigns and hopefully inform future paths of research in that area.
Mathematical reasoning in large language models (LMs) has garnered significant attention in recent work, but there is a limited understanding of how these models process and store information related to arithmetic tasks within their architecture. In order to improve our understanding of this aspect of language models, we present a mechanistic interpretation of Transformer-based LMs on arithmetic questions using a causal mediation analysis framework. By intervening on the activations of specific model components and measuring the resulting changes in predicted probabilities, we identify the subset of parameters responsible for specific predictions. This provides insights into how information related to arithmetic is processed by LMs. Our experimental results indicate that LMs process the input by transmitting the information relevant to the query from mid-sequence early layers to the final token using the attention mechanism. Then, this information is processed by a set of MLP modules, which generate result-related information that is incorporated into the residual stream. To assess the specificity of the observed activation dynamics, we compare the effects of different model components on arithmetic queries with other tasks, including number retrieval from prompts and factual knowledge questions.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.