This paper investigates in which cases continuous optimization for directed acyclic graph (DAG) structure learning can and cannot perform well and why this happens, and suggests possible directions to make the search procedure more reliable. Reisach et al. (2021) suggested that the remarkable performance of several continuous structure learning approaches is primarily driven by a high agreement between the order of increasing marginal variances and the topological order, and demonstrated that these approaches do not perform well after data standardization. We analyze this phenomenon for continuous approaches assuming equal and non-equal noise variances, and show that the statement may not hold in either case by providing counterexamples, justifications, and possible alternative explanations. We further demonstrate that nonconvexity may be a main concern especially for the non-equal noise variances formulation, while recent advances in continuous structure learning fail to achieve improvement in this case. Our findings suggest that future works should take into account the non-equal noise variances formulation to handle more general settings and for a more comprehensive empirical evaluation. Lastly, we provide insights into other aspects of the search procedure, including thresholding and sparsity, and show that they play an important role in the final solutions.
Neural ordinary differential equations (ODEs) are an emerging class of deep learning models for dynamical systems. They are particularly useful for learning an ODE vector field from observed trajectories (i.e., inverse problems). We here consider aspects of these models relevant for their application in science and engineering. Scientific predictions generally require structured uncertainty estimates. As a first contribution, we show that basic and lightweight Bayesian deep learning techniques like the Laplace approximation can be applied to neural ODEs to yield structured and meaningful uncertainty quantification. But, in the scientific domain, available information often goes beyond raw trajectories, and also includes mechanistic knowledge, e.g., in the form of conservation laws. We explore how mechanistic knowledge and uncertainty quantification interact on two recently proposed neural ODE frameworks - symplectic neural ODEs and physical models augmented with neural ODEs. In particular, uncertainty reflects the effect of mechanistic information more directly than the predictive power of the trained model could. And vice versa, structure can improve the extrapolation abilities of neural ODEs, a fact that can be best assessed in practice through uncertainty estimates. Our experimental analysis demonstrates the effectiveness of the Laplace approach on both low dimensional ODE problems and a high dimensional partial differential equation.
The geometric optimization of crystal structures is a procedure widely used in Chemistry that changes the geometrical placement of the particles inside a structure. It is called structural relaxation and constitutes a local minimization problem with a non-convex objective function whose domain complexity increases according to the number of particles involved. In this work we study the performance of the two most popular first order optimization methods in structural relaxation. Although frequently employed, there is a lack of their study in this context from an algorithmic point of view. We run each algorithm in combination with a constant step size, which provides a benchmark for the methods' analysis and direct comparison. We also design dynamic step size rules and study how these improve the two algorithms' performance. Our results show that there is a trade-off between convergence rate and the possibility of an experiment to succeed, hence we construct a function to assign utility to each method based on our respective preference. The function is built according to a recently introduced model of preference indication concerning algorithms with deadline and their run time. Finally, building on all our insights from the experimental results, we provide algorithmic recipes that best correspond to each of the presented preferences and select one recipe as the optimal for equally weighted preferences. Alongside our results we present our open source Python software veltiCRYS, which was used to perform the geometric optimization experiments. Our implementation, can be easily edited to accommodate other energy functions and is especially targeted for testing different methods in structural relaxation.
Probabilistic logical rule learning has shown great strength in logical rule mining and knowledge graph completion. It learns logical rules to predict missing edges by reasoning on existing edges in the knowledge graph. However, previous efforts have largely been limited to only modeling chain-like Horn clauses such as $R_1(x,z)\land R_2(z,y)\Rightarrow H(x,y)$. This formulation overlooks additional contextual information from neighboring sub-graphs of entity variables $x$, $y$ and $z$. Intuitively, there is a large gap here, as local sub-graphs have been found to provide important information for knowledge graph completion. Inspired by these observations, we propose Logical Entity RePresentation (LERP) to encode contextual information of entities in the knowledge graph. A LERP is designed as a vector of probabilistic logical functions on the entity's neighboring sub-graph. It is an interpretable representation while allowing for differentiable optimization. We can then incorporate LERP into probabilistic logical rule learning to learn more expressive rules. Empirical results demonstrate that with LERP, our model outperforms other rule learning methods in knowledge graph completion and is comparable or even superior to state-of-the-art black-box methods. Moreover, we find that our model can discover a more expressive family of logical rules. LERP can also be further combined with embedding learning methods like TransE to make it more interpretable.
In this paper, we study the statistical efficiency of Reinforcement Learning in Mean-Field Control (MFC) and Mean-Field Game (MFG) with general function approximation. We introduce a new concept called Mean-Field Model-Based Eluder Dimension (MBED), which subsumes a rich family of Mean-Field RL problems. Additionally, we propose algorithms based on Optimistic Maximal Likelihood Estimation, which can return an $\epsilon$-optimal policy for MFC or an $\epsilon$-Nash Equilibrium policy for MFG, with sample complexity polynomial w.r.t. relevant parameters and independent of the number of states, actions and the number of agents. Notably, our results only require a mild assumption of Lipschitz continuity on transition dynamics and avoid strong structural assumptions in previous work. Finally, in the tabular setting, given the access to a generative model, we establish an exponential lower bound for MFC setting, while providing a novel sample-efficient model elimination algorithm to approximate equilibrium in MFG setting. Our results reveal a fundamental separation between RL for single-agent, MFC, and MFG from the sample efficiency perspective.
Graph mining tasks arise from many different application domains, ranging from social networks, transportation, E-commerce, etc., which have been receiving great attention from the theoretical and algorithm design communities in recent years, and there has been some pioneering work using the hotly researched reinforcement learning (RL) techniques to address graph data mining tasks. However, these graph mining algorithms and RL models are dispersed in different research areas, which makes it hard to compare different algorithms with each other. In this survey, we provide a comprehensive overview of RL models and graph mining and generalize these algorithms to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method description, open-source codes, and benchmark datasets of GRL methods. Finally, we propose possible important directions and challenges to be solved in the future. This is the latest work on a comprehensive survey of GRL literature, and this work provides a global view for researchers as well as a learning resource for researchers outside the domain. In addition, we create an online open-source for both interested researchers who want to enter this rapidly developing domain and experts who would like to compare GRL methods.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.
Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.