亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is one of the most prominent algorithms to solve multi-objective optimization problems. Recently, the first mathematical runtime guarantees have been obtained for this algorithm, however only for synthetic benchmark problems. In this work, we give the first proven performance guarantees for a classic optimization problem, the NP-complete bi-objective minimum spanning tree problem. More specifically, we show that the NSGA-II with population size $N \ge 4((n-1) w_{\max} + 1)$ computes all extremal points of the Pareto front in an expected number of $O(m^2 n w_{\max} \log(n w_{\max}))$ iterations, where $n$ is the number of vertices, $m$ the number of edges, and $w_{\max}$ is the maximum edge weight in the problem instance. This result confirms, via mathematical means, the good performance of the NSGA-II observed empirically. It also shows that mathematical analyses of this algorithm are not only possible for synthetic benchmark problems, but also for more complex combinatorial optimization problems. As a side result, we also obtain a new analysis of the performance of the global SEMO algorithm on the bi-objective minimum spanning tree problem, which improves the previous best result by a factor of $|F|$, the number of extremal points of the Pareto front, a set that can be as large as $n w_{\max}$. The main reason for this improvement is our observation that both multi-objective evolutionary algorithms find the different extremal points in parallel rather than sequentially, as assumed in the previous proofs.

相關內容

This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization. In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices. The goal is to jointly determine the bitwidths employed for local FL model quantization and the set of devices participating in FL training at each iteration. We pose this as an optimization problem that aims to minimize the training loss of quantized FL under a per-iteration device sampling budget and delay requirement. However, the formulated problem is difficult to solve without (i) a concrete understanding of how quantization impacts global ML performance and (ii) the ability of the server to construct estimates of this process efficiently. To address the first challenge, we analytically characterize how limited wireless resources and induced quantization errors affect the performance of the proposed FL method. Our results quantify how the improvement of FL training loss between two consecutive iterations depends on the device selection and quantization scheme as well as on several parameters inherent to the model being learned. Then, we show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations. Compared to model-free RL, this model-based RL approach leverages the derived mathematical characterization of the FL training process to discover an effective device selection and quantization scheme without imposing additional device communication overhead. Simulation results show that the proposed FL algorithm can reduce the convergence time.

In the spanning tree congestion problem, given a connected graph $G$, the objective is to compute a spanning tree $T$ in $G$ that minimizes its maximum edge congestion, where the congestion of an edge $e$ of $T$ is the number of edges in $G$ for which the unique path in $T$ between their endpoints traverses $e$. The problem is known to be $\mathbb{NP}$-hard, but its approximability is still poorly understood. In the decision version of this problem, denoted $K-\textsf{STC}$, we need to determine if $G$ has a spanning tree with congestion at most $K$. It is known that $K-\textsf{STC}$ is $\mathbb{NP}$-complete for $K\ge 8$. On the other hand, $3-\textsf{STC}$ can be solved in polynomial time, with the complexity status of this problem for $K\in \{4,5,6,7\}$ remaining an open problem. We substantially improve the earlier hardness results by proving that $K-\textsf{STC}$ is $\mathbb{NP}$-complete for $K\ge 5$. This leaves only the case $K=4$ open, and improves the lower bound on the approximation ratio to $1.2$. Motivated by evidence that minimizing congestion is hard even for graphs of small constant radius, we consider $K-\textsf{STC}$ restricted to graphs of radius $2$, and we prove that this variant is $\mathbb{NP}$-complete for all $K\ge 6$. Exploring further in this direction, we also examine the variant, denoted $K-\textsf{STC}D$, where the objective is to determine if the graph has a depth-$D$ spanning three of congestion at most $K$. We prove that $6-\textsf{STC}2$ is $\mathbb{NP}$-complete even for bipartite graphs. For bipartite graphs we establish a tight bound, by also proving that $5-\textsf{STC}2$ is polynomial-time solvable. Additionally, we complement this result with polynomial-time algorithms for two special cases that involve bipartite graphs and restrictions on vertex degrees.

This paper presents a decentralized algorithm for solving distributed convex optimization problems in dynamic networks with time-varying objectives. The unique feature of the algorithm lies in its ability to accommodate a wide range of communication systems, including previously unsupported ones, by abstractly modeling the information exchange in the network. Specifically, it supports a novel communication protocol based on the "over-the-air" function computation (OTA-C) technology, that is designed for an efficient and truly decentralized implementation of the consensus step of the algorithm. Unlike existing OTA-C protocols, the proposed protocol does not require the knowledge of network graph structure or channel state information, making it particularly suitable for decentralized implementation over ultra-dense wireless networks with time-varying topologies and fading channels. Furthermore, the proposed algorithm synergizes with the "superiorization" methodology, allowing the development of new distributed algorithms with enhanced performance for the intended applications. The theoretical analysis establishes sufficient conditions for almost sure convergence of the algorithm to a common time-invariant solution for all agents, assuming such a solution exists. Our algorithm is applied to a real-world distributed random field estimation problem, showcasing its efficacy in terms of convergence speed, scalability, and spectral efficiency. Furthermore, we present a superiorized version of our algorithm that achieves faster convergence with significantly reduced energy consumption compared to the unsuperiorized algorithm.

Linearizability is a standard correctness criterion for concurrent algorithms, typically proved by establishing the algorithms' linearization points (LP). However, LPs often hinder abstraction, and for some algorithms such as the timestamped stack, it is unclear how to even identify their LPs. In this paper, we show how to develop declarative proofs of linearizability by foregoing LPs and instead employing axiomatization of so-called visibility relations. While visibility relations have been considered before for the timestamped stack, our study is the first to show how to derive the axiomatization systematically and intuitively from the sequential specification of the stack. In addition to the visibility relation, a novel separability relation emerges to generalize real-time precedence of procedure invocation. The visibility and separability relations have natural definitions for the timestamped stack, and enable a novel proof that reduces the algorithm to a simplified form where the timestamps are generated atomically.

In this paper, we provide a novel framework for the analysis of generalization error of first-order optimization algorithms for statistical learning when the gradient can only be accessed through partial observations given by an oracle. Our analysis relies on the regularity of the gradient w.r.t. the data samples, and allows to derive near matching upper and lower bounds for the generalization error of multiple learning problems, including supervised learning, transfer learning, robust learning, distributed learning and communication efficient learning using gradient quantization. These results hold for smooth and strongly-convex optimization problems, as well as smooth non-convex optimization problems verifying a Polyak-Lojasiewicz assumption. In particular, our upper and lower bounds depend on a novel quantity that extends the notion of conditional standard deviation, and is a measure of the extent to which the gradient can be approximated by having access to the oracle. As a consequence, our analysis provides a precise meaning to the intuition that optimization of the statistical learning objective is as hard as the estimation of its gradient. Finally, we show that, in the case of standard supervised learning, mini-batch gradient descent with increasing batch sizes and a warm start can reach a generalization error that is optimal up to a multiplicative factor, thus motivating the use of this optimization scheme in practical applications.

\textit{Pursuit-evasion games} have been intensively studied for several decades due to their numerous applications in artificial intelligence, robot motion planning, database theory, distributed computing, and algorithmic theory. \textsc{Cops and Robber} (\CR) is one of the most well-known pursuit-evasion games played on graphs, where multiple \textit{cops} pursue a single \textit{robber}. The aim is to compute the \textit{cop number} of a graph, $k$, which is the minimum number of cops that ensures the \textit{capture} of the robber. From the viewpoint of parameterized complexity, \CR is W[2]-hard parameterized by $k$~[Fomin et al., TCS, 2010]. Thus, we study structural parameters of the input graph. We begin with the \textit{vertex cover number} ($\mathsf{vcn}$). First, we establish that $k \leq \frac{\mathsf{vcn}}{3}+1$. Second, we prove that \CR parameterized by $\mathsf{vcn}$ is \FPT by designing an exponential kernel. We complement this result by showing that it is unlikely for \CR parameterized by $\mathsf{vcn}$ to admit a polynomial compression. We extend our exponential kernels to the parameters \textit{cluster vertex deletion number} and \textit{deletion to stars number}, and design a linear vertex kernel for \textit{neighborhood diversity}. Additionally, we extend all of our results to several well-studied variations of \CR.

This work, for the first time, introduces two constant factor approximation algorithms with linear query complexity for non-monotone submodular maximization over a ground set of size $n$ subject to a knapsack constraint, $\mathsf{DLA}$ and $\mathsf{RLA}$. $\mathsf{DLA}$ is a deterministic algorithm that provides an approximation factor of $6+\epsilon$ while $\mathsf{RLA}$ is a randomized algorithm with an approximation factor of $4+\epsilon$. Both run in $O(n \log(1/\epsilon)/\epsilon)$ query complexity. The key idea to obtain a constant approximation ratio with linear query lies in: (1) dividing the ground set into two appropriate subsets to find the near-optimal solution over these subsets with linear queries, and (2) combining a threshold greedy with properties of two disjoint sets or a random selection process to improve solution quality. In addition to the theoretical analysis, we have evaluated our proposed solutions with three applications: Revenue Maximization, Image Summarization, and Maximum Weighted Cut, showing that our algorithms not only return comparative results to state-of-the-art algorithms but also require significantly fewer queries.

The non-dominated sorting genetic algorithm II (NSGA-II) is the most intensively used multi-objective evolutionary algorithm (MOEA) in real-world applications. However, in contrast to several simple MOEAs analyzed also via mathematical means, no such study exists for the NSGA-II so far. In this work, we show that mathematical runtime analyses are feasible also for the NSGA-II. As particular results, we prove that with a population size four times larger than the size of the Pareto front, the NSGA-II with two classic mutation operators and four different ways to select the parents satisfies the same asymptotic runtime guarantees as the SEMO and GSEMO algorithms on the basic OneMinMax and LeadingOnesTrailingZeros benchmarks. However, if the population size is only equal to the size of the Pareto front, then the NSGA-II cannot efficiently compute the full Pareto front: for an exponential number of iterations, the population will always miss a constant fraction of the Pareto front. Our experiments confirm the above findings.

In the Generalized Noah's Ark Problem, one is given a phylogenetic tree on a set of species $X$ and a set of conservation projects for each species. Each project comes with a cost and raises the survival probability of the corresponding species. The aim is to select for each species a conservation project such that the total cost of the selected projects does not exceed some given threshold and the expected phylogenetic diversity is as large as possible. We study Generalized Noah's Ark Problem and some of its special cases with respect to several parameters related to the input structure such as the number of different costs, the number of different survival probabilities, or the number of species, $|X|$.

We present an information-theoretic approach to lower bound the oracle complexity of nonsmooth black box convex optimization, unifying previous lower bounding techniques by identifying a combinatorial problem, namely string guessing, as a single source of hardness. As a measure of complexity we use distributional oracle complexity, which subsumes randomized oracle complexity as well as worst-case oracle complexity. We obtain strong lower bounds on distributional oracle complexity for the box $[-1,1]^n$, as well as for the $L^p$-ball for $p \geq 1$ (for both low-scale and large-scale regimes), matching worst-case upper bounds, and hence we close the gap between distributional complexity, and in particular, randomized complexity, and worst-case complexity. Furthermore, the bounds remain essentially the same for high-probability and bounded-error oracle complexity, and even for combination of the two, i.e., bounded-error high-probability oracle complexity. This considerably extends the applicability of known bounds.

北京阿比特科技有限公司