亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Visual place recognition techniques based on deep learning, which have imposed themselves as the state-of-the-art in recent years, do not generalize well to environments visually different from the training set. Thus, to achieve top performance, it is sometimes necessary to fine-tune the networks to the target environment. To this end, we propose a self-supervised domain calibration procedure based on robust pose graph optimization from Simultaneous Localization and Mapping (SLAM) as the supervision signal without requiring GPS or manual labeling. Moreover, we leverage the procedure to improve uncertainty estimation for place recognition matches which is important in safety critical applications. We show that our approach can improve the performance of a state-of-the-art technique on a target environment dissimilar from its training set and that we can obtain uncertainty estimates. We believe that this approach will help practitioners to deploy robust place recognition solutions in real-world applications. Our code is available publicly: //github.com/MISTLab/vpr-calibration-and-uncertainty

相關內容

We consider the problem of forecasting debt recovery from large portfolios of non-performing unsecured consumer loans under management. The state of the art in industry is to use stochastic processes to approximately model payment behaviour of individual customers based on several covariates, including credit scores and payment history. Monte Carlo simulation of these stochastic processes can enable forecasting of the possible returns from portfolios of defaulted debt, and the quantification of uncertainty. Despite the fact that the individual-level models are relatively simple, it is challenging to carry out simulations at the portfolio level because of the very large number of accounts. The accounts are also heterogeneous, with a broad range of values for the collection variances. We aim to solve two main problems: efficient allocation of computational resources in the simulations to estimate the likely collections as precisely as possible, and quantification of the uncertainty in the forecasts. We show that under certain conditions, robust estimators of population-level variance can be constructed by summing over coarse unbiased estimators of the variance of individual accounts. The proposed methods are demonstrated through application to a model which shares key features with those that are used in practice.

Current person image retrieval methods have achieved great improvements in accuracy metrics. However, they rarely describe the reliability of the prediction. In this paper, we propose an Uncertainty-Aware Learning (UAL) method to remedy this issue. UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously. Data uncertainty captures the ``noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction. Specifically, in UAL, (1) we propose a sampling-free data uncertainty learning method to adaptively assign weights to different samples during training, down-weighting the low-quality ambiguous samples. (2) we leverage the Bayesian framework to model the model uncertainty by assuming the parameters of the network follow a Bernoulli distribution. (3) the data uncertainty and the model uncertainty are jointly learned in a unified network, and they serve as two fundamental criteria for the reliability assessment: if a probe is high-quality (low data uncertainty) and the model is confident in the prediction of the probe (low model uncertainty), the final ranking will be assessed as reliable. Experiments under the risk-controlled settings and the multi-query settings show the proposed reliability assessment is effective. Our method also shows superior performance on three challenging benchmarks under the vanilla single query settings.

Adaptive curricula in reinforcement learning (RL) have proven effective for producing policies robust to discrepancies between the train and test environment. Recently, the Unsupervised Environment Design (UED) framework generalized RL curricula to generating sequences of entire environments, leading to new methods with robust minimax regret properties. Problematically, in partially-observable or stochastic settings, optimal policies may depend on the ground-truth distribution over aleatoric parameters of the environment in the intended deployment setting, while curriculum learning necessarily shifts the training distribution. We formalize this phenomenon as curriculum-induced covariate shift (CICS), and describe how its occurrence in aleatoric parameters can lead to suboptimal policies. Directly sampling these parameters from the ground-truth distribution avoids the issue, but thwarts curriculum learning. We propose SAMPLR, a minimax regret UED method that optimizes the ground-truth utility function, even when the underlying training data is biased due to CICS. We prove, and validate on challenging domains, that our approach preserves optimality under the ground-truth distribution, while promoting robustness across the full range of environment settings.

Model-based control requires an accurate model of the system dynamics for precisely and safely controlling the robot in complex and dynamic environments. Moreover, in presence of variations in the operating conditions, the model should be continuously refined to compensate for dynamics changes. In this paper, we propose a self-supervised learning approach to actively model robot discrete-time dynamics. We combine offline learning from past experience and online learning from present robot interaction with the unknown environment. These two ingredients enable highly sample-efficient and adaptive learning for accurate inference of the model dynamics in real-time even in operating regimes significantly different from the training distribution. Moreover, we design an uncertainty-aware model predictive controller that is conditioned to the aleatoric (data) uncertainty of the learned dynamics. The controller actively selects the optimal control actions that (i) optimize the control performance and (ii) boost the online learning sample efficiency. We apply the proposed method to a quadrotor system in multiple challenging real-world experiments. Our approach exhibits high flexibility and generalization capabilities by consistently adapting to unseen flight conditions, while it significantly outperforms classical and adaptive control baselines.

Reliably estimating the uncertainty of a prediction throughout the model lifecycle is crucial in many safety-critical applications. The most common way to measure this uncertainty is via the predicted confidence. While this tends to work well for in-domain samples, these estimates are unreliable under domain drift. Alternatively, a bias-variance decomposition allows to directly measure the predictive uncertainty across the entire input space. But, such a decomposition for proper scores does not exist in current literature, and for exponential families it is convoluted. In this work, we introduce a general bias-variance decomposition for proper scores and reformulate the exponential family case, giving rise to the Bregman Information as the variance term in both cases. This allows us to prove that the Bregman Information for classification measures the uncertainty in the logit space. We showcase the practical relevance of this decomposition on two downstream tasks. First, we show how to construct confidence intervals for predictions on the instance-level based on the Bregman Information. Second, we demonstrate how different approximations of the instance-level Bregman Information allow reliable out-of-distribution detection for all degrees of domain drift.

The state-of-the-art for monocular 3D human pose estimation in videos is dominated by the paradigm of 2D-to-3D pose uplifting. While the uplifting methods themselves are rather efficient, the true computational complexity depends on the per-frame 2D pose estimation. In this paper, we present a Transformer-based pose uplifting scheme that can operate on temporally sparse 2D pose sequences but still produce temporally dense 3D pose estimates. We show how masked token modeling can be utilized for temporal upsampling within Transformer blocks. This allows to decouple the sampling rate of input 2D poses and the target frame rate of the video and drastically decreases the total computational complexity. Additionally, we explore the option of pre-training on large motion capture archives, which has been largely neglected so far. We evaluate our method on two popular benchmark datasets: Human3.6M and MPI-INF-3DHP. With an MPJPE of 45.0 mm and 46.9 mm, respectively, our proposed method can compete with the state-of-the-art while reducing inference time by a factor of 12. This enables real-time throughput with variable consumer hardware in stationary and mobile applications. We release our code and models at //github.com/goldbricklemon/uplift-upsample-3dhpe

Despite the fast development of multi-agent reinforcement learning (MARL) methods, there is a lack of commonly-acknowledged baseline implementation and evaluation platforms. As a result, an urgent need for MARL researchers is to develop an integrated library suite, similar to the role of RLlib in single-agent RL, that delivers reliable MARL implementation and replicable evaluation in various benchmarks. To fill such a research gap, in this paper, we propose Multi-Agent RLlib (MARLlib), a comprehensive MARL algorithm library that facilitates RLlib for solving multi-agent problems. With a novel design of agent-level distributed dataflow, MARLlib manages to unify tens of algorithms, including different types of independent learning, centralized critic, and value decomposition methods; this leads to a highly composable integration of MARL algorithms that are not possible to unify before. Furthermore, MARLlib goes beyond current work by integrating diverse environment interfaces and providing flexible parameter sharing strategies; this allows to create versatile solutions to cooperative, competitive, and mixed tasks with minimal code modifications for end users. A plethora of experiments are conducted to substantiate the correctness of our implementation, based on which we further derive new insights on the relationship between the performance and the design of algorithmic components. With MARLlib, we expect researchers to be able to tackle broader real-world multi-agent problems with trustworthy solutions. Our code\footnote{\url{//github.com/Replicable-MARL/MARLlib}} and documentation\footnote{\url{//marllib.readthedocs.io/}} are released for reference.

Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report 79.0% accuracy on the Kinetics dataset without using any pre-training, largely surpassing the previous best results of this kind. On AVA action detection we achieve a new state-of-the-art of 28.3 mAP. Code will be made publicly available.

北京阿比特科技有限公司