In this work, we consider the optimization formulation for symmetric tensor decomposition recently introduced in the Subspace Power Method (SPM) of Kileel and Pereira. Unlike popular alternative functionals for tensor decomposition, the SPM objective function has the desirable properties that its maximal value is known in advance, and its global optima are exactly the rank-1 components of the tensor when the input is sufficiently low-rank. We analyze the non-convex optimization landscape associated with the SPM objective. Our analysis accounts for working with noisy tensors. We derive quantitative bounds such that any second-order critical point with SPM objective value exceeding the bound must equal a tensor component in the noiseless case, and must approximate a tensor component in the noisy case. For decomposing tensors of size $D^{\times m}$, we obtain a near-global guarantee up to rank $\widetilde{o}(D^{\lfloor m/2 \rfloor})$ under a random tensor model, and a global guarantee up to rank $\mathcal{O}(D)$ assuming deterministic frame conditions. This implies that SPM with suitable initialization is a provable, efficient, robust algorithm for low-rank symmetric tensor decomposition. We conclude with numerics that show a practical preferability for using the SPM functional over a more established counterpart.
Let $X$ be a random variable with unknown mean and finite variance. We present a new estimator of the mean of $X$ that is robust with respect to the possible presence of outliers in the sample, provides tight sub-Gaussian deviation guarantees without any additional assumptions on the shape or tails of the distribution, and moreover is asymptotically efficient. This is the first estimator that provably combines all these qualities in one package. Our construction is inspired by robustness properties possessed by the self-normalized sums. Theoretical findings are supplemented by numerical simulations highlighting strong performance of the proposed estimator in comparison with previously known techniques.
We propose a simple and efficient clustering method for high-dimensional data with a large number of clusters. Our algorithm achieves high-performance by evaluating distances of datapoints with a subset of the cluster centres. Our contribution is substantially more efficient than k-means as it does not require an all to all comparison of data points and clusters. We show that the optimal solutions of our approximation are the same as in the exact solution. However, our approach is considerably more efficient at extracting these clusters compared to the state-of-the-art. We compare our approximation with the exact k-means and alternative approximation approaches on a series of standardised clustering tasks. For the evaluation, we consider the algorithmic complexity, including number of operations to convergence, and the stability of the results.
The purpose of this article is to develop machinery to study the capacity of deep neural networks (DNNs) to approximate high-dimensional functions. In particular, we show that DNNs have the expressive power to overcome the curse of dimensionality in the approximation of a large class of functions. More precisely, we prove that these functions can be approximated by DNNs on compact sets such that the number of parameters necessary to represent the approximating DNNs grows at most polynomially in the reciprocal $1/\varepsilon$ of the approximation accuracy $\varepsilon>0$ and in the input dimension $d\in \mathbb{N} =\{1,2,3,\dots\}$. To this end, we introduce certain approximation spaces, consisting of sequences of functions that can be efficiently approximated by DNNs. We then establish closure properties which we combine with known and new bounds on the number of parameters necessary to approximate locally Lipschitz continuous functions, maximum functions, and product functions by DNNs. The main result of this article demonstrates that DNNs have sufficient expressiveness to approximate certain sequences of functions which can be constructed by means of a finite number of compositions using locally Lipschitz continuous functions, maxima, and products without the curse of dimensionality.
In this paper, we propose a novel method for solving high-dimensional spectral fractional Laplacian equations. Using the Caffarelli-Silvestre extension, the $d$-dimensional spectral fractional equation is reformulated as a regular partial differential equation of dimension $d+1$. We transform the extended equation as a minimal Ritz energy functional problem and search for its minimizer in a special class of deep neural networks. Moreover, based on the approximation property of networks, we establish estimates on the error made by the deep Ritz method. Numerical results are reported to demonstrate the effectiveness of the proposed method for solving fractional Laplacian equations up to ten dimensions. Technically, in this method, we design a special network-based structure to adapt to the singularity and exponential decaying of the true solution. Also, A hybrid integration technique combining Monte Carlo method and sinc quadrature is developed to compute the loss function with higher accuracy.
In this paper, we study deep neural networks (DNNs) for solving high-dimensional evolution equations with oscillatory solutions. Different from deep least-squares methods that deal with time and space variables simultaneously, we propose a deep adaptive basis Galerkin (DABG) method which employs the spectral-Galerkin method for time variable by tensor-product basis for oscillatory solutions and the deep neural network method for high-dimensional space variables. The proposed method can lead to a linear system of differential equations having unknown DNNs that can be trained via the loss function. We establish a posterior estimates of the solution error which is bounded by the minimal loss function and the term $O(N^{-m})$, where $N$ is the number of basis functions and $m$ characterizes the regularity of the equation, and show that if the true solution is a Barron-type function, the error bound converges to zero as $M=O(N^p)$ approaches to infinity where $M$ is the width of the used networks and $p$ is a positive constant. Numerical examples including high-dimensional linear parabolic and hyperbolic equations, and nonlinear Allen-Cahn equation are presented to demonstrate the performance of the proposed DABG method is better than that of existing DNNs.
In this work, we investigate the inverse problem of determining the kernel functions that best describe the mechanical behavior of a complex medium modeled by a general nonlocal viscoelastic wave equation. To this end, we minimize a tracking-type data misfit function under this PDE constraint. We perform the well-posedness analysis of the state and adjoint problems and, using these results, rigorously derive the first-order sensitivities. Numerical experiments in a three-dimensional setting illustrate the method.
We consider large-scale Markov decision processes with an unknown cost function and address the problem of learning a policy from a finite set of expert demonstrations. We assume that the learner is not allowed to interact with the expert and has no access to reinforcement signal of any kind. Existing inverse reinforcement learning methods come with strong theoretical guarantees, but are computationally expensive, while state-of-the-art policy optimization algorithms achieve significant empirical success, but are hampered by limited theoretical understanding. To bridge the gap between theory and practice, we introduce a novel bilinear saddle-point framework using Lagrangian duality. The proposed primal-dual viewpoint allows us to develop a model-free provably efficient algorithm through the lens of stochastic convex optimization. The method enjoys the advantages of simplicity of implementation, low memory requirements, and computational and sample complexities independent of the number of states. We further present an equivalent no-regret online-learning interpretation.
Given the noisy pairwise measurements among a set of unknown group elements, how to recover them efficiently and robustly? This problem, known as group synchronization, has drawn tremendous attention in the scientific community. In this work, we focus on orthogonal group synchronization that has found many applications, including computer vision, robotics, and cryo-electron microscopy. One commonly used approach is the least squares estimation that requires solving a highly nonconvex optimization program. The past few years have witnessed considerable advances in tackling this challenging problem by convex relaxation and efficient first-order methods. However, one fundamental theoretical question remains to be answered: how does the recovery performance depend on the noise strength? To answer this question, we study a benchmark model: recovering orthogonal group elements from their pairwise measurements corrupted by Gaussian noise. We investigate the performance of convex relaxation and the generalized power method (GPM). By applying the novel~\emph{leave-one-out} technique, we prove that the GPM with spectral initialization enjoys linear convergence to the global optima to the convex relaxation that also matches the maximum likelihood estimator. Our result achieves a near-optimal performance bound on the convergence of the GPM and improves the state-of-the-art theoretical guarantees on the tightness of convex relaxation by a large margin.
This paper focuses on the regularization of backward time-fractional diffusion problem on unbounded domain. This problem is well-known to be ill-posed, whence the need of a regularization method in order to recover stable approximate solution. For the problem under consideration, we present a unified framework of regularization which covers some techniques such as Fourier regularization [19], mollification [12] and approximate-inverse [7]. We investigate a regularization technique with two major advantages: the simplicity of computation of the regularized solution and the avoid of truncation of high frequency components (so as to avoid undesirable oscillation on the resulting approximate-solution). Under classical Sobolev-smoothness conditions, we derive order-optimal error estimates between the approximate solution and the exact solution in the case where both the data and the model are only approximately known. In addition, an order-optimal a-posteriori parameter choice rule based on the Morozov principle is given. Finally, via some numerical experiments in two-dimensional space, we illustrate the efficiency of our regularization approach and we numerically confirm the theoretical convergence rates established in the paper.
This work considers the problem of provably optimal reinforcement learning for episodic finite horizon MDPs, i.e. how an agent learns to maximize his/her long term reward in an uncertain environment. The main contribution is in providing a novel algorithm --- Variance-reduced Upper Confidence Q-learning (vUCQ) --- which enjoys a regret bound of $\widetilde{O}(\sqrt{HSAT} + H^5SA)$, where the $T$ is the number of time steps the agent acts in the MDP, $S$ is the number of states, $A$ is the number of actions, and $H$ is the (episodic) horizon time. This is the first regret bound that is both sub-linear in the model size and asymptotically optimal. The algorithm is sub-linear in that the time to achieve $\epsilon$-average regret for any constant $\epsilon$ is $O(SA)$, which is a number of samples that is far less than that required to learn any non-trivial estimate of the transition model (the transition model is specified by $O(S^2A)$ parameters). The importance of sub-linear algorithms is largely the motivation for algorithms such as $Q$-learning and other "model free" approaches. vUCQ algorithm also enjoys minimax optimal regret in the long run, matching the $\Omega(\sqrt{HSAT})$ lower bound. Variance-reduced Upper Confidence Q-learning (vUCQ) is a successive refinement method in which the algorithm reduces the variance in $Q$-value estimates and couples this estimation scheme with an upper confidence based algorithm. Technically, the coupling of both of these techniques is what leads to the algorithm enjoying both the sub-linear regret property and the asymptotically optimal regret.