Despite the latest remarkable advances in generative modeling, efficient generation of high-quality 3D assets from textual prompts remains a difficult task. A key challenge lies in data scarcity: the most extensive 3D datasets encompass merely millions of assets, while their 2D counterparts contain billions of text-image pairs. To address this, we propose a novel approach which harnesses the power of large, pretrained 2D diffusion models. More specifically, our approach, HexaGen3D, fine-tunes a pretrained text-to-image model to jointly predict 6 orthographic projections and the corresponding latent triplane. We then decode these latents to generate a textured mesh. HexaGen3D does not require per-sample optimization, and can infer high-quality and diverse objects from textual prompts in 7 seconds, offering significantly better quality-to-latency trade-offs when comparing to existing approaches. Furthermore, HexaGen3D demonstrates strong generalization to new objects or compositions.
This paper proposes a framework for designing robust precoders for a multi-input single-output (MISO) system that performs integrated sensing and communication (ISAC) across multiple cells and users. We use Cramer-Rao-Bound (CRB) to measure the sensing performance and derive its expressions for two multi-cell scenarios, namely coordinated beamforming (CBF) and coordinated multi-point (CoMP). In the CBF scheme, a BS shares channel state information (CSI) and estimates target parameters using monostatic sensing. In contrast, a BS in the CoMP scheme shares the CSI and data, allowing bistatic sensing through inter-cell reflection. We consider both block-level (BL) and symbol-level (SL) precoding schemes for both the multi-cell scenarios that are robust to channel state estimation errors. The formulated optimization problems to minimize the CRB in estimating the parameters of a target and maximize the minimum communication signal-to-interference-plus-noise-ratio (SINR) while satisfying a given total transmit power budget are non-convex. We tackle the non-convexity using a combination of semidefinite relaxation (SDR) and alternating optimization (AO) techniques. Simulations suggest that neglecting the inter-cell reflection and communication links degrades the performance of an ISAC system. The CoMP scenario employing SL precoding performs the best, whereas the BL precoding applied in the CBF scenario produces relatively high estimation error for a given minimum SINR value.
Recent advancements in foundation models have yielded impressive performance across a wide range of tasks. Meanwhile, for specific applications, practitioners have been developing specialized application models. To enjoy the benefits of both kinds of models, one natural path is to transfer the knowledge in foundation models into specialized application models, which are generally more efficient for serving. Techniques from knowledge distillation may be applied here, where the application model learns to mimic the foundation model. However, specialized application models and foundation models have substantial gaps in capacity, employing distinct architectures, using different input features from different modalities, and being optimized on different distributions. These differences in model characteristics lead to significant challenges for distillation methods. In this work, we propose creating a teaching committee comprising both foundation model teachers and complementary teachers. Complementary teachers possess model characteristics akin to the student's, aiming to bridge the gap between the foundation model and specialized application models for a smoother knowledge transfer. Further, to accommodate the dissimilarity among the teachers in the committee, we introduce DiverseDistill, which allows the student to understand the expertise of each teacher and extract task knowledge. Our evaluations demonstrate that adding complementary teachers enhances student performance. Finally, DiverseDistill consistently outperforms baseline distillation methods, regardless of the teacher choices, resulting in significantly improved student performance.
LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to effectively instruct LLMs poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat fragmented optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structured design template, incurring high learning costs and resulting in low reusability. Inspired by structured reusable programming languages, we propose LangGPT, a dual-layer prompt design framework as the programming language for LLMs. LangGPT has an easy-to-learn normative structure and provides an extended structure for migration and reuse. Experiments illustrate that LangGPT significantly enhances the capacity of LLMs to produce responses of superior quality compared to baselines. Moreover, LangGPT has proven effective in guiding LLMs to generate high-quality prompts. We have built a community on LangGPT to facilitate the tuition and sharing of prompt design. We also analyzed the ease of use and reusability of LangGPT through a community user survey.
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora. It remains a challenging problem to explain the underlying mechanisms by which LLMs process multilingual texts. In this paper, we delve into the composition of Transformer architectures in LLMs to pinpoint language-specific regions. Specially, we propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs. Based on LAPE, we conduct comprehensive experiments on two representative LLMs, namely LLaMA-2 and BLOOM. Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons, primarily situated in the models' top and bottom layers. Furthermore, we showcase the feasibility to "steer" the output language of LLMs by selectively activating or deactivating language-specific neurons. Our research provides important evidence to the understanding and exploration of the multilingual capabilities of LLMs.
Quality Assurance (QA) aims to prevent mistakes and defects in manufactured products and avoid problems when delivering products or services to customers. QA for AI systems, however, poses particular challenges, given their data-driven and non-deterministic nature as well as more complex architectures and algorithms. While there is growing empirical evidence about practices of machine learning in industrial contexts, little is known about the challenges and best practices of quality assurance for AI systems (QA4AI). In this paper, we report on a mixed-method study of QA4AI in industry practice from various countries and companies. Through interviews with fifteen industry practitioners and a validation survey with 50 practitioner responses, we studied the concerns as well as challenges and best practices in ensuring the QA4AI properties reported in the literature, such as correctness, fairness, interpretability and others. Our findings suggest correctness as the most important property, followed by model relevance, efficiency and deployability. In contrast, transferability (applying knowledge learned in one task to another task), security and fairness are not paid much attention by practitioners compared to other properties. Challenges and solutions are identified for each QA4AI property. For example, interviewees highlighted the trade-off challenge among latency, cost and accuracy for efficiency (latency and cost are parts of efficiency concern). Solutions like model compression are proposed. We identified 21 QA4AI practices across each stage of AI development, with 10 practices being well recognized and another 8 practices being marginally agreed by the survey practitioners.
Effective feature representations play a critical role in enhancing the performance of text generation models that rely on deep neural networks. However, current approaches suffer from several drawbacks, such as the inability to capture the deep semantics of language and sensitivity to minor input variations, resulting in significant changes in the generated text. In this paper, we present a novel solution to these challenges by employing a mixture of experts, multiple encoders, to offer distinct perspectives on the emotional state of the user's utterance while simultaneously enhancing performance. We propose an end-to-end model architecture called ASEM that performs emotion analysis on top of sentiment analysis for open-domain chatbots, enabling the generation of empathetic responses that are fluent and relevant. In contrast to traditional attention mechanisms, the proposed model employs a specialized attention strategy that uniquely zeroes in on sentiment and emotion nuances within the user's utterance. This ensures the generation of context-rich representations tailored to the underlying emotional tone and sentiment intricacies of the text. Our approach outperforms existing methods for generating empathetic embeddings, providing empathetic and diverse responses. The performance of our proposed model significantly exceeds that of existing models, enhancing emotion detection accuracy by 6.2% and lexical diversity by 1.4%.
The capability to jointly process multi-modal information is becoming an essential task. However, the limited number of paired multi-modal data and the large computational requirements in multi-modal learning hinder the development. We propose a novel Tri-Modal Translation (TMT) model that translates between arbitrary modalities spanning speech, image, and text. We introduce a novel viewpoint, where we interpret different modalities as different languages, and treat multi-modal translation as a well-established machine translation problem. To this end, we tokenize speech and image data into discrete tokens, which provide a unified interface across modalities and significantly decrease the computational cost. In the proposed TMT, a multi-modal encoder-decoder conducts the core translation, whereas modality-specific processing is conducted only within the tokenization and detokenization stages. We evaluate the proposed TMT on all six modality translation tasks. TMT outperforms single model counterparts consistently, demonstrating that unifying tasks is beneficial not only for practicality but also for performance.
This article proposes a method to uncover opportunities for exploitation and exploration from consumer IoT interaction data. We develop a unique decomposition of cosine similarity that quantifies exploitation through functional similarity of interactions, exploration through cross-capacity similarity of counterfactual interactions, and differentiation of the two opportunities through within-similarity. We propose a topological data analysis method that incorporates these components of similarity and provides for their visualization. Functionally similar automations reveal exploitation opportunities for substitutes-in-use or complements-in-use, while exploration opportunities extend functionality into new use cases. This data-driven approach provides marketers with a powerful capability to discover possibilities for refining existing automation features while exploring new innovations. More generally, our approach can aid marketing efforts to balance these strategic opportunities in high technology contexts.
In this paper, we introduce Kun, a novel approach for creating high-quality instruction-tuning datasets for large language models (LLMs) without relying on manual annotations. Adapting a self-training algorithm based on instruction back-translation and answer polishment, Kun leverages unlabelled data from diverse sources such as Wudao, Wanjuan, and SkyPile to generate a substantial dataset of over a million Chinese instructional data points. This approach significantly deviates from traditional methods by using a self-curation process to refine and select the most effective instruction-output pairs. Our experiments with the 6B-parameter Yi model across various benchmarks demonstrate Kun's robustness and scalability. Our method's core contributions lie in its algorithmic advancement, which enhances data retention and clarity, and its innovative data generation approach that substantially reduces the reliance on costly and time-consuming manual annotations. This methodology presents a scalable and efficient solution for improving the instruction-following capabilities of LLMs, with significant implications for their application across diverse fields. The code and dataset can be found at //github.com/Zheng0428/COIG-Kun
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.