亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the increasingly rapid development of new malicious computer software by bad faith actors, both commercial and research-oriented antivirus detectors have come to make greater use of machine learning tactics to identify such malware as harmful before end users are exposed to their effects. This, in turn, has spurred the development of tools that allow for known malware to be manipulated such that they can evade being classified as dangerous by these machine learning-based detectors, while retaining their malicious functionality. These manipulations function by applying a set of changes that can be made to Windows programs that result in a different file structure and signature without altering the software's capabilities. Various proposals have been made for the most effective way of applying these alterations to input malware to deceive static malware detectors; the purpose of this research is to examine these proposals and test their implementations to determine which tactics tend to generate the most successful attacks.

相關內容

In recent years, increasing deployment of face recognition technology in security-critical settings, such as border control or law enforcement, has led to considerable interest in the vulnerability of face recognition systems to attacks utilising legitimate documents, which are issued on the basis of digitally manipulated face images. As automated manipulation and attack detection remains a challenging task, conventional processes with human inspectors performing identity verification remain indispensable. These circumstances merit a closer investigation of human capabilities in detecting manipulated face images, as previous work in this field is sparse and often concentrated only on specific scenarios and biometric characteristics. This work introduces a web-based, remote visual discrimination experiment on the basis of principles adopted from the field of psychophysics and subsequently discusses interdisciplinary opportunities with the aim of examining human proficiency in detecting different types of digitally manipulated face images, specifically face swapping, morphing, and retouching. In addition to analysing appropriate performance measures, a possible metric of detectability is explored. Experimental data of 306 probands indicate that detection performance is widely distributed across the population and detection of certain types of face image manipulations is much more challenging than others.

In this paper, we present how Bell's Palsy, a neurological disorder, can be detected just from a subject's eyes in a video. We notice that Bell's Palsy patients often struggle to blink their eyes on the affected side. As a result, we can observe a clear contrast between the blinking patterns of the two eyes. Although previous works did utilize images/videos to detect this disorder, none have explicitly focused on the eyes. Most of them require the entire face. One obvious advantage of having an eye-focused detection system is that subjects' anonymity is not at risk. Also, our AI decisions based on simple blinking patterns make them explainable and straightforward. Specifically, we develop a novel feature called blink similarity, which measures the similarity between the two blinking patterns. Our extensive experiments demonstrate that the proposed feature is quite robust, for it helps in Bell's Palsy detection even with very few labels. Our proposed eye-focused detection system is not only cheaper but also more convenient than several existing methods.

Light-based adversarial attacks use spatial augmented reality (SAR) techniques to fool image classifiers by altering the physical light condition with a controllable light source, e.g., a projector. Compared with physical attacks that place hand-crafted adversarial objects, projector-based ones obviate modifying the physical entities, and can be performed transiently and dynamically by altering the projection pattern. However, subtle light perturbations are insufficient to fool image classifiers, due to the complex environment and project-and-capture process. Thus, existing approaches focus on projecting clearly perceptible adversarial patterns, while the more interesting yet challenging goal, stealthy projector-based attack, remains open. In this paper, for the first time, we formulate this problem as an end-to-end differentiable process and propose a Stealthy Projector-based Adversarial Attack (SPAA) solution. In SPAA, we approximate the real Project-and-Capture process using a deep neural network named PCNet, then we include PCNet in the optimization of projector-based attacks such that the generated adversarial projection is physically plausible. Finally, to generate both robust and stealthy adversarial projections, we propose an algorithm that uses minimum perturbation and adversarial confidence thresholds to alternate between the adversarial loss and stealthiness loss optimization. Our experimental evaluations show that SPAA clearly outperforms other methods by achieving higher attack success rates and meanwhile being stealthier, for both targeted and untargeted attacks.

From denial-of-service attacks to spreading of ransomware or other malware across an organization's network, it is possible that manually operated defenses are not able to respond in real time at the scale required, and when a breach is detected and remediated the damage is already made. Autonomous cyber defenses therefore become essential to mitigate the risk of successful attacks and their damage, especially when the response time, effort and accuracy required in those defenses is impractical or impossible through defenses operated exclusively by humans. Autonomous agents have the potential to use ML with large amounts of data about known cyberattacks as input, in order to learn patterns and predict characteristics of future attacks. Moreover, learning from past and present attacks enable defenses to adapt to new threats that share characteristics with previous attacks. On the other hand, autonomous cyber defenses introduce risks of unintended harm. Actions arising from autonomous defense agents may have harmful consequences of functional, safety, security, ethical, or moral nature. Here we focus on machine learning training, algorithmic feedback, and algorithmic constraints, with the aim of motivating a discussion on achieving trust in autonomous cyber defenses.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

There has been an ongoing cycle where stronger defenses against adversarial attacks are subsequently broken by a more advanced defense-aware attack. We present a new approach towards ending this cycle where we "deflect'' adversarial attacks by causing the attacker to produce an input that semantically resembles the attack's target class. To this end, we first propose a stronger defense based on Capsule Networks that combines three detection mechanisms to achieve state-of-the-art detection performance on both standard and defense-aware attacks. We then show that undetected attacks against our defense often perceptually resemble the adversarial target class by performing a human study where participants are asked to label images produced by the attack. These attack images can no longer be called "adversarial'' because our network classifies them the same way as humans do.

In recent years, deep learning has shown performance breakthroughs in many applications, such as image detection, image segmentation, pose estimation, and speech recognition. However, this comes with a major concern: deep networks have been found to be vulnerable to adversarial examples. Adversarial examples are slightly modified inputs that are intentionally designed to cause a misclassification by the model. In the domains of images and speech, the modifications are so small that they are not seen or heard by humans, but nevertheless greatly affect the classification of the model. Deep learning models have been successfully applied to malware detection. In this domain, generating adversarial examples is not straightforward, as small modifications to the bytes of the file could lead to significant changes in its functionality and validity. We introduce a novel loss function for generating adversarial examples specifically tailored for discrete input sets, such as executable bytes. We modify malicious binaries so that they would be detected as benign, while preserving their original functionality, by injecting a small sequence of bytes (payload) in the binary file. We applied this approach to an end-to-end convolutional deep learning malware detection model and show a high rate of detection evasion. Moreover, we show that our generated payload is robust enough to be transferable within different locations of the same file and across different files, and that its entropy is low and similar to that of benign data sections.

Machine learning is a popular approach to signatureless malware detection because it can generalize to never-before-seen malware families and polymorphic strains. This has resulted in its practical use for either primary detection engines or for supplementary heuristic detection by anti-malware vendors. Recent work in adversarial machine learning has shown that deep learning models are susceptible to gradient-based attacks, whereas non-differentiable models that report a score can be attacked by genetic algorithms that aim to systematically reduce the score. We propose a more general framework based on reinforcement learning (RL) for attacking static portable executable (PE) anti-malware engines. The general framework does not require a differentiable model nor does it require the engine to produce a score. Instead, an RL agent is equipped with a set of functionality-preserving operations that it may perform on the PE file. Through a series of games played against the anti-malware engine, it learns which sequences of operations are likely to result in evading the detector for any given malware sample. This enables completely black-box attacks against static PE anti-malware, and produces functional evasive malware samples as a direct result. We show in experiments that our method can attack a gradient-boosted machine learning model with evasion rates that are substantial and appear to be strongly dependent on the dataset. We demonstrate that attacks against this model appear to also evade components of publicly hosted antivirus engines. Adversarial training results are also presented: by retraining the model on evasive ransomware samples, a subsequent attack is 33% less effective. However, there are overfitting dangers when adversarial training, which we note. We release code to allow researchers to reproduce and improve this approach.

北京阿比特科技有限公司