Federated Learning (FL) has emerged as a fundamental learning paradigm to harness massive data scattered at geo-distributed edge devices in a privacy-preserving way. Given the heterogeneous deployment of edge devices, however, their data are usually Non-IID, introducing significant challenges to FL including degraded training accuracy, intensive communication costs, and high computing complexity. Towards that, traditional approaches typically utilize adaptive mechanisms, which may suffer from scalability issues, increased computational overhead, and limited adaptability to diverse edge environments. To address that, this paper instead leverages the observation that the computation offloading involves inherent functionalities such as node matching and service correlation to achieve data reshaping and proposes Federated learning based on computing Offloading (FlocOff) framework, to address data heterogeneity and resource-constrained challenges. Specifically, FlocOff formulates the FL process with Non-IID data in edge scenarios and derives rigorous analysis on the impact of imbalanced data distribution. Based on this, FlocOff decouples the optimization in two steps, namely : (1) Minimizes the Kullback-Leibler (KL) divergence via Computation Offloading scheduling (MKL-CO); (2) Minimizes the Communication Cost through Resource Allocation (MCC-RA). Extensive experimental results demonstrate that the proposed FlocOff effectively improves model convergence and accuracy by 14.3\%-32.7\% while reducing data heterogeneity under various data distributions.
We study risk-sensitive reinforcement learning (RL), a crucial field due to its ability to enhance decision-making in scenarios where it is essential to manage uncertainty and minimize potential adverse outcomes. Particularly, our work focuses on applying the entropic risk measure to RL problems. While existing literature primarily investigates the online setting, there remains a large gap in understanding how to efficiently derive a near-optimal policy based on this risk measure using only a pre-collected dataset. We center on the linear Markov Decision Process (MDP) setting, a well-regarded theoretical framework that has yet to be examined from a risk-sensitive standpoint. In response, we introduce two provably sample-efficient algorithms. We begin by presenting a risk-sensitive pessimistic value iteration algorithm, offering a tight analysis by leveraging the structure of the risk-sensitive performance measure. To further improve the obtained bounds, we propose another pessimistic algorithm that utilizes variance information and reference-advantage decomposition, effectively improving both the dependence on the space dimension $d$ and the risk-sensitivity factor. To the best of our knowledge, we obtain the first provably efficient risk-sensitive offline RL algorithms.
Parameter-efficient transfer learning (PETL) has emerged as a flourishing research field for adapting large pre-trained models to downstream tasks, greatly reducing trainable parameters while grappling with memory challenges during fine-tuning. To address it, memory-efficient series (METL) avoid backpropagating gradients through the large backbone. However, they compromise by exclusively relying on frozen intermediate outputs and limiting the exhaustive exploration of prior knowledge from pre-trained models. Moreover, the dependency and redundancy between cross-layer features are frequently overlooked, thereby submerging more discriminative representations and causing an inherent performance gap (vs. conventional PETL methods). Hence, we propose an innovative METL strategy called SHERL for resource-limited scenarios to decouple the entire adaptation into two successive and complementary processes. In the early route, intermediate outputs are consolidated via an anti-redundancy operation, enhancing their compatibility for subsequent interactions; thereby in the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead and regulate these fairly flexible features into more adaptive and powerful representations for new domains. Extensive ablations on vision-and-language and language-only tasks show that SHERL combines the strengths of both parameter and memory-efficient techniques, performing on-par or better across diverse architectures with lower memory during fine-tuning. Our code is publicly available at: //github.com/Paranioar/SHERL.
The emergence of large language models (LLMs) has revolutionized the way we interact with graphs, leading to a new paradigm called GraphLLM. Despite the rapid development of GraphLLM methods in recent years, the progress and understanding of this field remain unclear due to the lack of a benchmark with consistent experimental protocols. To bridge this gap, we introduce GLBench, the first comprehensive benchmark for evaluating GraphLLM methods in both supervised and zero-shot scenarios. GLBench provides a fair and thorough evaluation of different categories of GraphLLM methods, along with traditional baselines such as graph neural networks. Through extensive experiments on a collection of real-world datasets with consistent data processing and splitting strategies, we have uncovered several key findings. Firstly, GraphLLM methods outperform traditional baselines in supervised settings, with LLM-as-enhancers showing the most robust performance. However, using LLMs as predictors is less effective and often leads to uncontrollable output issues. We also notice that no clear scaling laws exist for current GraphLLM methods. In addition, both structures and semantics are crucial for effective zero-shot transfer, and our proposed simple baseline can even outperform several models tailored for zero-shot scenarios. The data and code of the benchmark can be found at //github.com/NineAbyss/GLBench.
This paper proposes a composite inner-product computation unit based on left-to-right (LR) arithmetic for the acceleration of convolution neural networks (CNN) on hardware. The efficacy of the proposed L2R-CIPU method has been shown on the VGG-16 network, and assessment is done on various performance metrics. The L2R-CIPU design achieves 1.06x to 6.22x greater performance, 4.8x to 15x more TOPS/W, and 4.51x to 53.45x higher TOPS/mm2 than prior architectures.
We introduce DexDiffuser, a novel dexterous grasping method that generates, evaluates, and refines grasps on partial object point clouds. DexDiffuser includes the conditional diffusion-based grasp sampler DexSampler and the dexterous grasp evaluator DexEvaluator. DexSampler generates high-quality grasps conditioned on object point clouds by iterative denoising of randomly sampled grasps. We also introduce two grasp refinement strategies: Evaluator-Guided Diffusion (EGD) and Evaluator-based Sampling Refinement (ESR). The experiment results demonstrate that DexDiffuser consistently outperforms the state-of-the-art multi-finger grasp generation method FFHNet with an, on average, 9.12% and 19.44% higher grasp success rate in simulation and real robot experiments, respectively. Supplementary materials are available at //yulihn.github.io/DexDiffuser_page/
Database Management Systems (DBMSs) are vital components in modern data-driven systems. Their complexity often leads to logic bugs, which are implementation errors within the DBMSs that can lead to incorrect query results, data exposure, unauthorized access, etc., without necessarily causing visible system failures. Existing detection employs two strategies: rule-based bug detection and coverage-guided fuzzing. In general, rule specification itself is challenging; as a result, rule-based detection is limited to specific and simple rules. Coverage-guided fuzzing blindly explores code paths or blocks, many of which are unlikely to contain logic bugs; therefore, this strategy is cost-ineffective. In this paper, we design SQLaser, a SQL-clause-guided fuzzer for detecting logic bugs in DBMSs. Through a comprehensive examination of most existing logic bugs across four distinct DBMSs, excluding those causing system crashes, we have identified 35 logic bug patterns. These patterns manifest as certain SQL clause combinations that commonly result in logic bugs, and behind these clause combinations are a sequence of functions. We therefore model logic bug patterns as error-prone function chains (ie, sequences of functions). We further develop a directed fuzzer with a new path-to-path distance-calculation mechanism for effectively testing these chains and discovering additional logic bugs. This mechanism enables SQLaser to swiftly navigate to target sites and uncover potential bugs emerging from these paths. Our evaluation, conducted on SQLite, MySQL, PostgreSQL, and TiDB, demonstrates that SQLaser significantly accelerates bug discovery compared to other fuzzing approaches, reducing detection time by approximately 60%.
The rapid adoption of machine learning (ML) has underscored the importance of serving ML models with high throughput and resource efficiency. Traditional approaches to managing increasing query demands have predominantly focused on hardware scaling, which involves increasing server count or computing power. However, this strategy can often be impractical due to limitations in the available budget or compute resources. As an alternative, accuracy scaling offers a promising solution by adjusting the accuracy of ML models to accommodate fluctuating query demands. Yet, existing accuracy scaling techniques target independent ML models and tend to underperform while managing inference pipelines. Furthermore, they lack integration with hardware scaling, leading to potential resource inefficiencies during low-demand periods. To address the limitations, this paper introduces Loki, a system designed for serving inference pipelines effectively with both hardware and accuracy scaling. Loki incorporates an innovative theoretical framework for optimal resource allocation and an effective query routing algorithm, aimed at improving system accuracy and minimizing latency deadline violations. Our empirical evaluation demonstrates that through accuracy scaling, the effective capacity of a fixed-size cluster can be enhanced by more than $2.7\times$ compared to relying solely on hardware scaling. When compared with state-of-the-art inference-serving systems, Loki achieves up to a $10\times$ reduction in Service Level Objective (SLO) violations, with minimal compromises on accuracy and while fulfilling throughput demands.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection in GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.
Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.