亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An in-depth understanding of uncertainty is the first step to making effective decisions under uncertainty. Deep/machine learning (ML/DL) has been hugely leveraged to solve complex problems involved with processing high-dimensional data. However, reasoning and quantifying different types of uncertainties to achieve effective decision-making have been much less explored in ML/DL than in other Artificial Intelligence (AI) domains. In particular, belief/evidence theories have been studied in KRR since the 1960s to reason and measure uncertainties to enhance decision-making effectiveness. We found that only a few studies have leveraged the mature uncertainty research in belief/evidence theories in ML/DL to tackle complex problems under different types of uncertainty. In this survey paper, we discuss several popular belief theories and their core ideas dealing with uncertainty causes and types and quantifying them, along with the discussions of their applicability in ML/DL. In addition, we discuss three main approaches that leverage belief theories in Deep Neural Networks (DNNs), including Evidential DNNs, Fuzzy DNNs, and Rough DNNs, in terms of their uncertainty causes, types, and quantification methods along with their applicability in diverse problem domains. Based on our in-depth survey, we discuss insights, lessons learned, limitations of the current state-of-the-art bridging belief theories and ML/DL, and finally, future research directions.

相關內容

Autonomous vehicles are a growing technology that aims to enhance safety, accessibility, efficiency, and convenience through autonomous maneuvers ranging from lane change to overtaking. Overtaking is one of the most challenging maneuvers for autonomous vehicles, and current techniques for autonomous overtaking are limited to simple situations. This paper studies how to increase safety in autonomous overtaking by allowing the maneuver to be aborted. We propose a decision-making process based on a deep Q-Network to determine if and when the overtaking maneuver needs to be aborted. The proposed algorithm is empirically evaluated in simulation with varying traffic situations, indicating that the proposed method improves safety during overtaking maneuvers. Furthermore, the approach is demonstrated in real-world experiments using the autonomous shuttle iseAuto.

Scientific machine learning has become an increasingly popular tool for solving high dimensional differential equations and constructing surrogates of complex physical models. In this work, we propose a deep learning based numerical method for solving elliptic partial differential equations (PDE) with random coefficients. We elucidate the stochastic variational formulation for the problem by recourse to the direct method of calculus of variations. The formulation allows us to reformulate the random coefficient PDE into a stochastic optimization problem, subsequently solved by a combination of Monte Carlo sampling and deep-learning approximation. The resulting method is simple yet powerful. We carry out numerical experiments to demonstrate the efficiency and accuracy of the proposed method.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

In recent years, larger and deeper models are springing up and continuously pushing state-of-the-art (SOTA) results across various fields like natural language processing (NLP) and computer vision (CV). However, despite promising results, it needs to be noted that the computations required by SOTA models have been increased at an exponential rate. Massive computations not only have a surprisingly large carbon footprint but also have negative effects on research inclusiveness and deployment on real-world applications. Green deep learning is an increasingly hot research field that appeals to researchers to pay attention to energy usage and carbon emission during model training and inference. The target is to yield novel results with lightweight and efficient technologies. Many technologies can be used to achieve this goal, like model compression and knowledge distillation. This paper focuses on presenting a systematic review of the development of Green deep learning technologies. We classify these approaches into four categories: (1) compact networks, (2) energy-efficient training strategies, (3) energy-efficient inference approaches, and (4) efficient data usage. For each category, we discuss the progress that has been achieved and the unresolved challenges.

Deep neural networks have been able to outperform humans in some cases like image recognition and image classification. However, with the emergence of various novel categories, the ability to continuously widen the learning capability of such networks from limited samples, still remains a challenge. Techniques like Meta-Learning and/or few-shot learning showed promising results, where they can learn or generalize to a novel category/task based on prior knowledge. In this paper, we perform a study of the existing few-shot meta-learning techniques in the computer vision domain based on their method and evaluation metrics. We provide a taxonomy for the techniques and categorize them as data-augmentation, embedding, optimization and semantics based learning for few-shot, one-shot and zero-shot settings. We then describe the seminal work done in each category and discuss their approach towards solving the predicament of learning from few samples. Lastly we provide a comparison of these techniques on the commonly used benchmark datasets: Omniglot, and MiniImagenet, along with a discussion towards the future direction of improving the performance of these techniques towards the final goal of outperforming humans.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

Generative adversarial networks (GANs) are a hot research topic recently. GANs have been widely studied since 2014, and a large number of algorithms have been proposed. However, there is few comprehensive study explaining the connections among different GANs variants, and how they have evolved. In this paper, we attempt to provide a review on various GANs methods from the perspectives of algorithms, theory, and applications. Firstly, the motivations, mathematical representations, and structure of most GANs algorithms are introduced in details. Furthermore, GANs have been combined with other machine learning algorithms for specific applications, such as semi-supervised learning, transfer learning, and reinforcement learning. This paper compares the commonalities and differences of these GANs methods. Secondly, theoretical issues related to GANs are investigated. Thirdly, typical applications of GANs in image processing and computer vision, natural language processing, music, speech and audio, medical field, and data science are illustrated. Finally, the future open research problems for GANs are pointed out.

In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

北京阿比特科技有限公司