亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The modern Mixed Reality devices that make the Metaverse viable require vast information about the physical world and can also violate the privacy of unsuspecting or unwilling bystanders in their vicinity. In this article, we provide an introduction to the problem, existing solutions, and avenues for future research.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Engineering · 生成式人工智能 · MoDELS · AI ·
2024 年 1 月 4 日

In this paper, the adoption patterns of Generative Artificial Intelligence (AI) tools within software engineering are investigated. Influencing factors at the individual, technological, and societal levels are analyzed using a mixed-methods approach for an extensive comprehension of AI adoption. An initial structured interview was conducted with 100 software engineers, employing the Technology Acceptance Model (TAM), the Diffusion of Innovations theory (DOI), and the Social Cognitive Theory (SCT) as guiding theories. A theoretical model named the Human-AI Collaboration and Adaptation Framework (HACAF) was deduced using the Gioia Methodology, characterizing AI adoption in software engineering. This model's validity was subsequently tested through Partial Least Squares - Structural Equation Modeling (PLS-SEM), using data collected from 183 software professionals. The results indicate that the adoption of AI tools in these early integration stages is primarily driven by their compatibility with existing development workflows. This finding counters the traditional theories of technology acceptance. Contrary to expectations, the influence of perceived usefulness, social aspects, and personal innovativeness on adoption appeared to be less significant. This paper yields significant insights for the design of future AI tools and supplies a structure for devising effective strategies for organizational implementation.

In mobile networks, Open Radio Access Network (ORAN) provides a framework for implementing network slicing that interacts with the resources at the lower layers. Both monitoring and Radio Access Network (RAN) control is feasible for both 4G and 5G systems. In this work, we consider how data-driven resource allocation in a 4G context can enable adaptive slice allocation to steer the experienced latency of Virtual Reality (VR) traffic towards a requested latency. We develop an xApp for the near real-time RAN Intelligent Controller (RIC) that embeds a heuristic algorithm for latency control, aiming to: (1) maintain latency of a VR stream around a requested value; and (2) improve the available RAN allocation to offer higher bit rate to another user. We have experimentally demonstrated the proposed approach in an ORAN testbed. Our results show that the data-driven approach can dynamically follow the variation of the traffic load while satisfying the required latency. This results in 15.8% more resources to secondary users than a latency-equivalent static allocation.

Large Language Models (LLMs) like ChatGPT are foundational in various applications due to their extensive knowledge from pre-training and fine-tuning. Despite this, they are prone to generating factual and commonsense errors, raising concerns in critical areas like healthcare, journalism, and education to mislead users. Current methods for evaluating LLMs' veracity are limited by test data leakage or the need for extensive human labor, hindering efficient and accurate error detection. To tackle this problem, we introduce a novel, automatic testing framework, FactChecker, aimed at uncovering factual inaccuracies in LLMs. This framework involves three main steps: First, it constructs a factual knowledge graph by retrieving fact triplets from a large-scale knowledge database. Then, leveraging the knowledge graph, FactChecker employs a rule-based approach to generates three types of questions (Yes-No, Multiple-Choice, and WH questions) that involve single-hop and multi-hop relations, along with correct answers. Lastly, it assesses the LLMs' responses for accuracy using tailored matching strategies for each question type. Our extensive tests on six prominent LLMs, including text-davinci-002, text-davinci-003, ChatGPT~(gpt-3.5-turbo, gpt-4), Vicuna, and LLaMA-2, reveal that FactChecker can trigger factual errors in up to 45\% of questions in these models. Moreover, we demonstrate that FactChecker's test cases can improve LLMs' factual accuracy through in-context learning and fine-tuning (e.g., llama-2-13b-chat's accuracy increase from 35.3\% to 68.5\%). We are making all code, data, and results available for future research endeavors.

Despite technological advancements, the significance of interdisciplinary subjects like complex networks has grown. Exploring communication within these networks is crucial, with traffic becoming a key concern due to the expanding population and increased need for connections. Congestion tends to originate in specific network areas but quickly proliferates throughout. Consequently, understanding the transition from a flow-free state to a congested state is vital. Numerous studies have delved into comprehending the emergence and control of congestion in complex networks, falling into three general categories: soft strategies, hard strategies, and resource allocation strategies. This article introduces a routing algorithm leveraging reinforcement learning to address two primary objectives: congestion control and optimizing path length based on the shortest path algorithm, ultimately enhancing network throughput compared to previous methods. Notably, the proposed method proves effective not only in Barab\'asi-Albert scale-free networks but also in other network models such as Watts-Strogatz (small-world) and Erd\"os-R\'enyi (random network). Simulation experiment results demonstrate that, across various traffic scenarios and network topologies, the proposed method can enhance efficiency criteria by up to 30% while reducing maximum node congestion by five times.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司