Probabilistic models based on continuous latent spaces, such as variational autoencoders, can be understood as uncountable mixture models where components depend continuously on the latent code. They have proven expressive tools for generative and probabilistic modelling, but are at odds with tractable probabilistic inference, that is, computing marginals and conditionals of the represented probability distribution. Meanwhile, tractable probabilistic models such as probabilistic circuits (PCs) can be understood as hierarchical discrete mixture models, which allows them to perform exact inference, but often they show subpar performance in comparison to continuous latent-space models. In this paper, we investigate a hybrid approach, namely continuous mixtures of tractable models with a small latent dimension. While these models are analytically intractable, they are well amenable to numerical integration schemes based on a finite set of integration points. With a large enough number of integration points the approximation becomes de-facto exact. Moreover, using a finite set of integration points, the approximation method can be compiled into a PC performing `exact inference in an approximate model'. In experiments, we show that this simple scheme proves remarkably effective, as PCs learned this way set new state-of-the-art for tractable models on many standard density estimation benchmarks.
Reliability of machine learning evaluation -- the consistency of observed evaluation scores across replicated model training runs -- is affected by several sources of nondeterminism which can be regarded as measurement noise. Current tendencies to remove noise in order to enforce reproducibility of research results neglect inherent nondeterminism at the implementation level and disregard crucial interaction effects between algorithmic noise factors and data properties. This limits the scope of conclusions that can be drawn from such experiments. Instead of removing noise, we propose to incorporate several sources of variance, including their interaction with data properties, into an analysis of significance and reliability of machine learning evaluation, with the aim to draw inferences beyond particular instances of trained models. We show how to use linear mixed effects models (LMEMs) to analyze performance evaluation scores, and to conduct statistical inference with a generalized likelihood ratio test (GLRT). This allows us to incorporate arbitrary sources of noise like meta-parameter variations into statistical significance testing, and to assess performance differences conditional on data properties. Furthermore, a variance component analysis (VCA) enables the analysis of the contribution of noise sources to overall variance and the computation of a reliability coefficient by the ratio of substantial to total variance.
Verifying probabilistic forecasts for extreme events is a highly active research area because popular media and public opinions are naturally focused on extreme events, and biased conclusions are readily made. In this context, classical verification methods tailored for extreme events, such as thresholded and weighted scoring rules, have undesirable properties that cannot be mitigated, and the well-known continuous ranked probability score (CRPS) is no exception. In this paper, we define a formal framework for assessing the behavior of forecast evaluation procedures with respect to extreme events, which we use to demonstrate that assessment based on the expectation of a proper score is not suitable for extremes. Alternatively, we propose studying the properties of the CRPS as a random variable by using extreme value theory to address extreme event verification. An index is introduced to compare calibrated forecasts, which summarizes the ability of probabilistic forecasts for predicting extremes. The strengths and limitations of this method are discussed using both theoretical arguments and simulations.
Estimation of heterogeneous causal effects - i.e., how effects of policies and treatments vary across subjects - is a fundamental task in causal inference, playing a crucial role in optimal treatment allocation, generalizability, subgroup effects, and more. Many flexible methods for estimating conditional average treatment effects (CATEs) have been proposed in recent years, but questions surrounding optimality have remained largely unanswered. In particular, a minimax theory of optimality has yet to be developed, with the minimax rate of convergence and construction of rate-optimal estimators remaining open problems. In this paper we derive the minimax rate for CATE estimation, in a nonparametric model where distributional components are Holder-smooth, and present a new local polynomial estimator, giving high-level conditions under which it is minimax optimal. More specifically, our minimax lower bound is derived via a localized version of the method of fuzzy hypotheses, combining lower bound constructions for nonparametric regression and functional estimation. Our proposed estimator can be viewed as a local polynomial R-Learner, based on a localized modification of higher-order influence function methods; it is shown to be minimax optimal under a condition on how accurately the covariate distribution is estimated. The minimax rate we find exhibits several interesting features, including a non-standard elbow phenomenon and an unusual interpolation between nonparametric regression and functional estimation rates. The latter quantifies how the CATE, as an estimand, can be viewed as a regression/functional hybrid. We conclude with some discussion of a few remaining open problems.
This paper proposes a new test for the comparison of conditional quantile curves when the outcome of interest, typically a duration, is subject to right censoring. The test can be applied both in the case of two independent samples and for paired data, and can be used for the comparison of quantiles at a fixed quantile level, a finite set of levels or a range of quantile levels. The asymptotic distribution of the proposed test statistics is obtained both under the null hypothesis and under local alternatives. We describe a bootstrap procedure in order to approximate the critical values, and present the results of a simulation study, in which the performance of the tests for small and moderate sample sizes is studied and compared with the behavior of alternative tests. Finally, we apply the proposed tests on a data set concerning diabetic retinopathy.
Federated learning methods, that is, methods that perform model training using data situated across different sources, whilst simultaneously not having the data leave their original source, are of increasing interest in a number of fields. However, despite this interest, the classes of models for which easily-applicable and sufficiently general approaches are available is limited, excluding many structured probabilistic models. We present a general yet elegant resolution to the aforementioned issue. The approach is based on adopting structured variational inference, an approach widely used in Bayesian machine learning, to the federated setting. Additionally, a communication-efficient variant analogous to the canonical FedAvg algorithm is explored. The effectiveness of the proposed algorithms are demonstrated, and their performance is compared on Bayesian multinomial regression, topic modelling, and mixed model examples.
The Fisher information matrix (FIM) is a key quantity in statistics as it is required for example for evaluating asymptotic precisions of parameter estimates, for computing test statistics or asymptotic distributions in statistical testing, for evaluating post model selection inference results or optimality criteria in experimental designs. However its exact computation is often not trivial. In particular in many latent variable models, it is intricated due to the presence of unobserved variables. Therefore the observed FIM is usually considered in this context to estimate the FIM. Several methods have been proposed to approximate the observed FIM when it can not be evaluated analytically. Among the most frequently used approaches are Monte-Carlo methods or iterative algorithms derived from the missing information principle. All these methods require to compute second derivatives of the complete data log-likelihood which leads to some disadvantages from a computational point of view. In this paper, we present a new approach to estimate the FIM in latent variable model. The advantage of our method is that only the first derivatives of the log-likelihood is needed, contrary to other approaches based on the observed FIM. Indeed we consider the empirical estimate of the covariance matrix of the score. We prove that this estimate of the Fisher information matrix is unbiased, consistent and asymptotically Gaussian. Moreover we highlight that none of both estimates is better than the other in terms of asymptotic covariance matrix. When the proposed estimate can not be directly analytically evaluated, we present a stochastic approximation estimation algorithm to compute it. This algorithm provides this estimate of the FIM as a by-product of the parameter estimates. We emphasize that the proposed algorithm only requires to compute the first derivatives of the complete data log-likelihood with respect to the parameters. We prove that the estimation algorithm is consistent and asymptotically Gaussian when the number of iterations goes to infinity. We evaluate the finite sample size properties of the proposed estimate and of the observed FIM through simulation studies in linear mixed effects models and mixture models. We also investigate the convergence properties of the estimation algorithm in non linear mixed effects models. We compare the performances of the proposed algorithm to those of other existing methods.
An old problem in multivariate statistics is that linear Gaussian models are often unidentifiable, i.e. some parameters cannot be uniquely estimated. In factor analysis, an orthogonal rotation of the factors is unidentifiable, while in linear regression, the direction of effect cannot be identified. For such linear models, non-Gaussianity of the (latent) variables has been shown to provide identifiability. In the case of factor analysis, this leads to independent component analysis, while in the case of the direction of effect, non-Gaussian versions of structural equation modelling solve the problem. More recently, we have shown how even general nonparametric nonlinear versions of such models can be estimated. Non-Gaussianity is not enough in this case, but assuming we have time series, or that the distributions are suitably modulated by some observed auxiliary variables, the models are identifiable. This paper reviews the identifiability theory for the linear and nonlinear cases, considering both factor analytic models and structural equation models.
Probabilistic forecasts are essential for various downstream applications such as business development, traffic planning, and electrical grid balancing. Many of these probabilistic forecasts are performed on time series data that contain calendar-driven periodicities. However, existing probabilistic forecasting methods do not explicitly take these periodicities into account. Therefore, in the present paper, we introduce a deep learning-based method that considers these calendar-driven periodicities explicitly. The present paper, thus, has a twofold contribution: First, we apply statistical methods that use calendar-driven prior knowledge to create rolling statistics and combine them with neural networks to provide better probabilistic forecasts. Second, we benchmark ProbPNN with state-of-the-art benchmarks by comparing the achieved normalised continuous ranked probability score (nCRPS) and normalised Pinball Loss (nPL) on two data sets containing in total more than 1000 time series. The results of the benchmarks show that using statistical forecasting components improves the probabilistic forecast performance and that ProbPNN outperforms other deep learning forecasting methods whilst requiring less computation costs.
Constrained multiobjective optimization has gained much interest in the past few years. However, constrained multiobjective optimization problems (CMOPs) are still unsatisfactorily understood. Consequently, the choice of adequate CMOPs for benchmarking is difficult and lacks a formal background. This paper addresses this issue by exploring CMOPs from a performance space perspective. First, it presents a novel performance assessment approach designed explicitly for constrained multiobjective optimization. This methodology offers a first attempt to simultaneously measure the performance in approximating the Pareto front and constraint satisfaction. Secondly, it proposes an approach to measure the capability of the given optimization problem to differentiate among algorithm performances. Finally, this approach is used to contrast eight frequently used artificial test suites of CMOPs. The experimental results reveal which suites are more efficient in discerning between three well-known multiobjective optimization algorithms. Benchmark designers can use these results to select the most appropriate CMOPs for their needs.
The ability to interpret machine learning models has become increasingly important as their usage in data science continues to rise. Most current interpretability methods are optimized to work on either (\textit{i}) a global scale, where the goal is to rank features based on their contributions to overall variation in an observed population, or (\textit{ii}) the local level, which aims to detail on how important a feature is to a particular individual in the dataset. In this work, we present the ``GlObal And Local Score'' (GOALS) operator: a simple \textit{post hoc} approach to simultaneously assess local and global feature variable importance in nonlinear models. Motivated by problems in statistical genetics, we demonstrate our approach using Gaussian process regression where understanding how genetic markers affect trait architecture both among individuals and across populations is of high interest. With detailed simulations and real data analyses, we illustrate the flexible and efficient utility of GOALS over state-of-the-art variable importance strategies.