The transformation model is an essential component of any deformable image registration approach. It provides a representation of physical deformations between images, thereby defining the range and realism of registrations that can be found. Two types of transformation models have emerged as popular choices: B-spline models and mesh models. Although both models have been investigated in detail, a direct comparison has not yet been made, since the models are optimized using very different optimization methods in practice. B-spline models are predominantly optimized using gradient-descent methods, while mesh models are typically optimized using finite-element method solvers or evolutionary algorithms. Multi-objective optimization methods, which aim to find a diverse set of high-quality trade-off registrations, are increasingly acknowledged to be important in deformable image registration. Since these methods search for a diverse set of registrations, they can provide a more complete picture of the capabilities of different transformation models, making them suitable for a comparison of models. In this work, we conduct the first direct comparison between B-spline and mesh transformation models, by optimizing both models with the same state-of-the-art multi-objective optimization method, the Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA). The combination with B-spline transformation models, moreover, is novel. We experimentally compare both models on two different registration problems that are both based on pelvic CT scans of cervical cancer patients, featuring large deformations. Our results, on three cervical cancer patients, indicate that the choice of transformation model can have a profound impact on the diversity and quality of achieved registration outcomes.
Text-to-image generation has made significant advancements with the introduction of text-to-image diffusion models. These models typically consist of a language model that interprets user prompts and a vision model that generates corresponding images. As language and vision models continue to progress in their respective domains, there is a great potential in exploring the replacement of components in text-to-image diffusion models with more advanced counterparts. A broader research objective would therefore be to investigate the integration of any two unrelated language and generative vision models for text-to-image generation. In this paper, we explore this objective and propose LaVi-Bridge, a pipeline that enables the integration of diverse pre-trained language models and generative vision models for text-to-image generation. By leveraging LoRA and adapters, LaVi-Bridge offers a flexible and plug-and-play approach without requiring modifications to the original weights of the language and vision models. Our pipeline is compatible with various language models and generative vision models, accommodating different structures. Within this framework, we demonstrate that incorporating superior modules, such as more advanced language models or generative vision models, results in notable improvements in capabilities like text alignment or image quality. Extensive evaluations have been conducted to verify the effectiveness of LaVi-Bridge. Code is available at //github.com/ShihaoZhaoZSH/LaVi-Bridge.
Whisper is a multitask and multilingual speech model covering 99 languages. It yields commendable automatic speech recognition (ASR) results in a subset of its covered languages, but the model still underperforms on a non-negligible number of under-represented languages, a problem exacerbated in smaller model versions. In this work, we propose DistilWhisper, an approach able to bridge the performance gap in ASR for these languages while retaining the advantages of multitask and multilingual capabilities. Our approach involves two key strategies: lightweight modular ASR fine-tuning of whisper-small using language-specific experts, and knowledge distillation from whisper-large-v2. This dual approach allows us to effectively boost ASR performance while keeping the robustness inherited from the multitask and multilingual pre-training. Results demonstrate that our approach is more effective than standard fine-tuning or LoRA adapters, boosting performance in the targeted languages for both in- and out-of-domain test sets, while introducing only a negligible parameter overhead at inference.
The objective of personalization and stylization in text-to-image is to instruct a pre-trained diffusion model to analyze new concepts introduced by users and incorporate them into expected styles. Recently, parameter-efficient fine-tuning (PEFT) approaches have been widely adopted to address this task and have greatly propelled the development of this field. Despite their popularity, existing efficient fine-tuning methods still struggle to achieve effective personalization and stylization in T2I generation. To address this issue, we propose block-wise Low-Rank Adaptation (LoRA) to perform fine-grained fine-tuning for different blocks of SD, which can generate images faithful to input prompts and target identity and also with desired style. Extensive experiments demonstrate the effectiveness of the proposed method.
Recent text-to-image (T2I) generation models have demonstrated impressive capabilities in creating images from text descriptions. However, these T2I generation models often fall short of generating images that precisely match the details of the text inputs, such as incorrect spatial relationship or missing objects. In this paper, we introduce SELMA: Skill-Specific Expert Learning and Merging with Auto-Generated Data, a novel paradigm to improve the faithfulness of T2I models by fine-tuning models on automatically generated, multi-skill image-text datasets, with skill-specific expert learning and merging. First, SELMA leverages an LLM's in-context learning capability to generate multiple datasets of text prompts that can teach different skills, and then generates the images with a T2I model based on the prompts. Next, SELMA adapts the T2I model to the new skills by learning multiple single-skill LoRA (low-rank adaptation) experts followed by expert merging. Our independent expert fine-tuning specializes multiple models for different skills, and expert merging helps build a joint multi-skill T2I model that can generate faithful images given diverse text prompts, while mitigating the knowledge conflict from different datasets. We empirically demonstrate that SELMA significantly improves the semantic alignment and text faithfulness of state-of-the-art T2I diffusion models on multiple benchmarks (+2.1% on TIFA and +6.9% on DSG), human preference metrics (PickScore, ImageReward, and HPS), as well as human evaluation. Moreover, fine-tuning with image-text pairs auto-collected via SELMA shows comparable performance to fine-tuning with ground truth data. Lastly, we show that fine-tuning with images from a weaker T2I model can help improve the generation quality of a stronger T2I model, suggesting promising weak-to-strong generalization in T2I models.
Subject-driven generation has garnered significant interest recently due to its ability to personalize text-to-image generation. Typical works focus on learning the new subject's private attributes. However, an important fact has not been taken seriously that a subject is not an isolated new concept but should be a specialization of a certain category in the pre-trained model. This results in the subject failing to comprehensively inherit the attributes in its category, causing poor attribute-related generations. In this paper, motivated by object-oriented programming, we model the subject as a derived class whose base class is its semantic category. This modeling enables the subject to inherit public attributes from its category while learning its private attributes from the user-provided example. Specifically, we propose a plug-and-play method, Subject-Derived regularization (SuDe). It constructs the base-derived class modeling by constraining the subject-driven generated images to semantically belong to the subject's category. Extensive experiments under three baselines and two backbones on various subjects show that our SuDe enables imaginative attribute-related generations while maintaining subject fidelity. Codes will be open sourced soon at FaceChain (//github.com/modelscope/facechain).
Previous works in prompt engineering for large language models have introduced different gradient-free probability-based prompt selection methods that aim to choose the optimal prompt among the candidates for a given task but have failed to provide a comprehensive and fair comparison between each other. In this paper, we propose a unified framework to interpret and evaluate the existing probability-based prompt selection methods by performing extensive experiments on 13 common and diverse NLP tasks. We find that each of the existing methods can be interpreted as some variant of the method that maximizes mutual information between the input and the predicted output (MI). Utilizing this finding, we develop several other combinatorial variants of MI and increase the effectiveness of the oracle prompt selection method from 87.79% to 94.98%, measured as the ratio of the performance of the selected prompt to that of the optimal oracle prompt. Furthermore, considering that all the methods rely on the output probability distribution of the model that might be biased, we propose a novel calibration method called Calibration by Marginalization (CBM) that is orthogonal to the existing methods and helps increase the prompt selection effectiveness of the best method to 96.85%, achieving 99.44% of the oracle prompt F1 without calibration.
Vanilla text-to-image diffusion models struggle with generating accurate human images, commonly resulting in imperfect anatomies such as unnatural postures or disproportionate limbs.Existing methods address this issue mostly by fine-tuning the model with extra images or adding additional controls -- human-centric priors such as pose or depth maps -- during the image generation phase. This paper explores the integration of these human-centric priors directly into the model fine-tuning stage, essentially eliminating the need for extra conditions at the inference stage. We realize this idea by proposing a human-centric alignment loss to strengthen human-related information from the textual prompts within the cross-attention maps. To ensure semantic detail richness and human structural accuracy during fine-tuning, we introduce scale-aware and step-wise constraints within the diffusion process, according to an in-depth analysis of the cross-attention layer. Extensive experiments show that our method largely improves over state-of-the-art text-to-image models to synthesize high-quality human images based on user-written prompts. Project page: \url{//hcplayercvpr2024.github.io}.
Achieving efficient and consistent localization a prior map remains challenging in robotics. Conventional keyframe-based approaches often suffers from sub-optimal viewpoints due to limited field of view (FOV) and/or constrained motion, thus degrading the localization performance. To address this issue, we design a real-time tightly-coupled Neural Radiance Fields (NeRF)-aided visual-inertial navigation system (VINS). In particular, by effectively leveraging the NeRF's potential to synthesize novel views, the proposed NeRF-VINS overcomes the limitations of traditional keyframe-based maps (with limited views) and optimally fuses IMU, monocular images, and synthetically rendered images within an efficient filter-based framework. This tightly-coupled fusion enables efficient 3D motion tracking with bounded errors. We extensively compare the proposed NeRF-VINS against the state-of-the-art methods that use prior map information and demonstrate its ability to perform real-time localization, at over 10 Hz, on a resource-constrained Jetson AGX Orin embedded platform.
Despite the tremendous success of diffusion generative models in text-to-image generation, replicating this success in the domain of image compression has proven difficult. In this paper, we demonstrate that diffusion can significantly improve perceptual quality at a given bit-rate, outperforming state-of-the-art approaches PO-ELIC and HiFiC as measured by FID score. This is achieved using a simple but theoretically motivated two-stage approach combining an autoencoder targeting MSE followed by a further score-based decoder. However, as we will show, implementation details matter and the optimal design decisions can differ greatly from typical text-to-image models.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.