亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Silhouette coefficient is an established internal clustering evaluation measure that produces a score per data point, assessing the quality of its clustering assignment. To assess the quality of the clustering of the whole dataset, the scores of all the points in the dataset are either (micro) averaged into a single value or averaged at the cluster level and then (macro) averaged. As we illustrate in this work, by using a synthetic example, the micro-averaging strategy is sensitive both to cluster imbalance and outliers (background noise) while macro-averaging is far more robust to both. Furthermore, the latter allows cluster-balanced sampling which yields robust computation of the silhouette score. By conducting an experimental study on eight real-world datasets, estimating the ground truth number of clusters, we show that both coefficients, micro and macro, should be considered.

相關內容

Modern neural network architectures still struggle to learn algorithmic procedures that require to systematically apply compositional rules to solve out-of-distribution problem instances. In this work, we propose an original approach to learn algorithmic tasks inspired by rewriting systems, a classic framework in symbolic artificial intelligence. We show that a rewriting system can be implemented as a neural architecture composed by specialized modules: the Selector identifies the target sub-expression to process, the Solver simplifies the sub-expression by computing the corresponding result, and the Combiner produces a new version of the original expression by replacing the sub-expression with the solution provided. We evaluate our model on three types of algorithmic tasks that require simplifying symbolic formulas involving lists, arithmetic, and algebraic expressions. We test the extrapolation capabilities of the proposed architecture using formulas involving a higher number of operands and nesting levels than those seen during training, and we benchmark its performance against the Neural Data Router, a recent model specialized for systematic generalization, and a state-of-the-art large language model (GPT-4) probed with advanced prompting strategies.

Fusion-based place recognition is an emerging technique jointly utilizing multi-modal perception data, to recognize previously visited places in GPS-denied scenarios for robots and autonomous vehicles. Recent fusion-based place recognition methods combine multi-modal features in implicit manners. While achieving remarkable results, they do not explicitly consider what the individual modality affords in the fusion system. Therefore, the benefit of multi-modal feature fusion may not be fully explored. In this paper, we propose a novel fusion-based network, dubbed EINet, to achieve explicit interaction of the two modalities. EINet uses LiDAR ranges to supervise more robust vision features for long time spans, and simultaneously uses camera RGB data to improve the discrimination of LiDAR point clouds. In addition, we develop a new benchmark for the place recognition task based on the nuScenes dataset. To establish this benchmark for future research with comprehensive comparisons, we introduce both supervised and self-supervised training schemes alongside evaluation protocols. We conduct extensive experiments on the proposed benchmark, and the experimental results show that our EINet exhibits better recognition performance as well as solid generalization ability compared to the state-of-the-art fusion-based place recognition approaches. Our open-source code and benchmark are released at: //github.com/BIT-XJY/EINet.

Dialog summarization has become increasingly important in managing and comprehending large-scale conversations across various domains. This task presents unique challenges in capturing the key points, context, and nuances of multi-turn long conversations for summarization. It is worth noting that the summarization techniques may vary based on specific requirements such as in a shopping-chatbot scenario, the dialog summary helps to learn user preferences, whereas in the case of a customer call center, the summary may involve the problem attributes that a user specified, and the final resolution provided. This work emphasizes the significance of creating coherent and contextually rich summaries for effective communication in various applications. We explore current state-of-the-art approaches for long dialog summarization in different domains and benchmark metrics based evaluations show that one single model does not perform well across various areas for distinct summarization tasks.

Quantifying uncertainty in high-dimensional sparse linear regression is a fundamental task in statistics that arises in various applications. One of the most successful methods for quantifying uncertainty is the debiased LASSO, which has a solid theoretical foundation but is restricted to settings where the noise is purely additive. Motivated by real-world applications, we study the so-called Poisson inverse problem with additive Gaussian noise and propose a debiased LASSO algorithm that only requires $n \gg s\log^2p$ samples, which is optimal up to a logarithmic factor.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .

北京阿比特科技有限公司