Finding a good approximation of the top eigenvector of a given $d\times d$ matrix $A$ is a basic and important computational problem, with many applications. We give two different quantum algorithms that, given query access to the entries of a Hermitian matrix $A$ and assuming a constant eigenvalue gap, output a classical description of a good approximation of the top eigenvector: one algorithm with time complexity $\mathcal{\tilde{O}}(d^{1.75})$ and one with time complexity $d^{1.5+o(1)}$ (the first algorithm has a slightly better dependence on the $\ell_2$-error of the approximating vector than the second, and uses different techniques of independent interest). Both of our quantum algorithms provide a polynomial speed-up over the best-possible classical algorithm, which needs $\Omega(d^2)$ queries to entries of $A$, and hence $\Omega(d^2)$ time. We extend this to a quantum algorithm that outputs a classical description of the subspace spanned by the top-$q$ eigenvectors in time $qd^{1.5+o(1)}$. We also prove a nearly-optimal lower bound of $\tilde{\Omega}(d^{1.5})$ on the quantum query complexity of approximating the top eigenvector. Our quantum algorithms run a version of the classical power method that is robust to certain benign kinds of errors, where we implement each matrix-vector multiplication with small and well-behaved error on a quantum computer, in different ways for the two algorithms. Our first algorithm estimates the matrix-vector product one entry at a time, using a new ``Gaussian phase estimation'' procedure. Our second algorithm uses block-encoding techniques to compute the matrix-vector product as a quantum state, from which we obtain a classical description by a new time-efficient unbiased pure-state tomography procedure.
Embedding high-dimensional data into a low-dimensional space is an indispensable component of data analysis. In numerous applications, it is necessary to align and jointly embed multiple datasets from different studies or experimental conditions. Such datasets may share underlying structures of interest but exhibit individual distortions, resulting in misaligned embeddings using traditional techniques. In this work, we propose \textit{Entropic Optimal Transport (EOT) eigenmaps}, a principled approach for aligning and jointly embedding a pair of datasets with theoretical guarantees. Our approach leverages the leading singular vectors of the EOT plan matrix between two datasets to extract their shared underlying structure and align the datasets accordingly in a common embedding space. We interpret our approach as an inter-data variant of the classical Laplacian eigenmaps and diffusion maps embeddings, showing that it enjoys many favorable analogous properties. We then analyze a data-generative model where two observed high-dimensional datasets share latent variables on a common low-dimensional manifold, but each dataset is subject to data-specific translation, scaling, nuisance structures, and noise. We show that in a high-dimensional asymptotic regime, the EOT plan recovers the shared manifold structure by approximating a kernel function evaluated at the locations of the latent variables. Subsequently, we provide a geometric interpretation of our embedding by relating it to the eigenfunctions of population-level operators encoding the density and geometry of the shared manifold. Finally, we showcase the performance of our approach for data integration and embedding through simulations and analyses of real-world biological data, demonstrating its advantages over alternative methods in challenging scenarios.
We propose a general-purpose approximation to the Ferguson-Klass algorithm for generating samples from L\'evy processes without Gaussian components. We show that the proposed method is more than 1000 times faster than the standard Ferguson-Klass algorithm without a significant loss of precision. This method can open an avenue for computationally efficient and scalable Bayesian nonparametric models which go beyond conjugacy assumptions, as demonstrated in the examples section.
We study first-order logic over unordered structures whose elements carry a finite number of data values from an infinite domain. Data values can be compared wrt.\ equality. As the satisfiability problem for this logic is undecidable in general, we introduce a family of local fragments. They restrict quantification to the neighbourhood of a given reference point that is bounded by some radius. Our first main result establishes decidability of the satisfiability problem for the local radius-1 fragment in presence of one "diagonal relation". On the other hand, extending the radius leads to undecidability. In a second part, we provide the precise decidability and complexity landscape of the satisfiability problem for the existential fragments of local logic, which are parameterized by the number of data values carried by each element and the radius of the considered neighbourhoods. Altogether, we draw a landscape of formalisms that are suitable for the specification of systems with data and open up new avenues for future research.
Capability ontologies are increasingly used to model functionalities of systems or machines. The creation of such ontological models with all properties and constraints of capabilities is very complex and can only be done by ontology experts. However, Large Language Models (LLMs) have shown that they can generate machine-interpretable models from natural language text input and thus support engineers / ontology experts. Therefore, this paper investigates how LLMs can be used to create capability ontologies. We present a study with a series of experiments in which capabilities with varying complexities are generated using different prompting techniques and with different LLMs. Errors in the generated ontologies are recorded and compared. To analyze the quality of the generated ontologies, a semi-automated approach based on RDF syntax checking, OWL reasoning, and SHACL constraints is used. The results of this study are very promising because even for complex capabilities, the generated ontologies are almost free of errors.
The $N$-point discrete Fourier transform (DFT) is a cornerstone for several signal processing applications. Many of these applications operate in real-time, making the computational complexity of the DFT a critical performance indicator to be optimized. Unfortunately, whether the $\mathcal{O}(N\log_2 N)$ time complexity of the fast Fourier transform (FFT) can be outperformed remains an unresolved question in the theory of computation. However, in many applications of the DFT -- such as compressive sensing, image processing, and wideband spectral analysis -- only a small fraction of the output signal needs to be computed because the signal is sparse. This motivates the development of algorithms that compute specific DFT coefficients more efficiently than the FFT algorithm. In this article, we show that the number of points of some DFT coefficients can be dramatically reduced by means of elementary mathematical properties. We present an algorithm that compacts the square index coefficients (SICs) of DFT (i.e., $X_{k\sqrt{N}}$, $k=0,1,\cdots, \sqrt{N}-1$, for a square number $N$) from $N$ to $\sqrt{N}$ points at the expense of $N-1$ complex sums and no multiplication. Based on this, any regular DFT algorithm can be straightforwardly applied to compute the SICs with a reduced number of complex multiplications. If $N$ is a power of two, one can combine our algorithm with the FFT to calculate all SICs in $\mathcal{O}(\sqrt{N}\log_2\sqrt{N})$ time complexity.
Let $R \cup B$ be a set of $n$ points in $\mathbb{R}^2$, and let $k \in 1..n$. Our goal is to compute a line that "best" separates the "red" points $R$ from the "blue" points $B$ with at most $k$ outliers. We present an efficient semi-online dynamic data structure that can maintain whether such a separator exists. Furthermore, we present efficient exact and approximation algorithms that compute a linear separator that is guaranteed to misclassify at most $k$, points and minimizes the distance to the farthest outlier. Our exact algorithm runs in $O(nk + n \log n)$ time, and our $(1+\varepsilon)$-approximation algorithm runs in $O(\varepsilon^{-1/2}((n + k^2) \log n))$ time. Based on our $(1+\varepsilon)$-approximation algorithm we then also obtain a semi-online data structure to maintain such a separator efficiently.
An effective exact method is proposed for computing generalized eigenspaces of a matrix of integers or rational numbers. Keys of our approach are the use of minimal annihilating polynomials and the concept of the Jourdan-Krylov basis. A new method, called Jordan-Krylov elimination, is introduced to design an algorithm for computing Jordan-Krylov basis. The resulting algorithm outputs generalized eigenspaces as a form of Jordan chains. Notably, in the output, components of generalized eigenvectors are expressed as polynomials in the associated eigenvalue as a variable.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.