亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The globalization of the Integrated Circuit (IC) supply chain, driven by time-to-market and cost considerations, has made ICs vulnerable to hardware Trojans (HTs). Against this threat, a promising approach is to use Machine Learning (ML)-based side-channel analysis, which has the advantage of being a non-intrusive method, along with efficiently detecting HTs under golden chip-free settings. In this paper, we question the trustworthiness of ML-based HT detection via side-channel analysis. We introduce a HT obfuscation (HTO) approach to allow HTs to bypass this detection method. Rather than theoretically misleading the model by simulated adversarial traces, a key aspect of our approach is the design and implementation of adversarial noise as part of the circuitry, alongside the HT. We detail HTO methodologies for ASICs and FPGAs, and evaluate our approach using TrustHub benchmark. Interestingly, we found that HTO can be implemented with only a single transistor for ASIC designs to generate adversarial power traces that can fool the defense with 100% efficiency. We also efficiently implemented our approach on a Spartan 6 Xilinx FPGA using 2 different variants: (i) DSP slices-based, and (ii) ring-oscillator-based design. Additionally, we assess the efficiency of countermeasures like spectral domain analysis, and we show that an adaptive attacker can still design evasive HTOs by constraining the design with a spectral noise budget. In addition, while adversarial training (AT) offers higher protection against evasive HTs, AT models suffer from a considerable utility loss, potentially rendering them unsuitable for such security application. We believe this research represents a significant step in understanding and exploiting ML vulnerabilities in a hardware security context, and we make all resources and designs openly available online: //dev.d18uu4lqwhbmka.amplifyapp.com

相關內容

Distributionally robust optimization has emerged as an attractive way to train robust machine learning models, capturing data uncertainty and distribution shifts. Recent statistical analyses have proved that robust models built from Wasserstein ambiguity sets have nice generalization guarantees, breaking the curse of dimensionality. However, these results are obtained in specific cases, at the cost of approximations, or under assumptions difficult to verify in practice. In contrast, we establish, in this article, exact generalization guarantees that cover all practical cases, including any transport cost function and any loss function, potentially non-convex and nonsmooth. For instance, our result applies to deep learning, without requiring restrictive assumptions. We achieve this result through a novel proof technique that combines nonsmooth analysis rationale with classical concentration results. Our approach is general enough to extend to the recent versions of Wasserstein/Sinkhorn distributionally robust problems that involve (double) regularizations.

This paper analyses the high-frequency intraday Bitcoin dataset from 2019 to 2022. During this time frame, the Bitcoin market index exhibited two distinct periods characterized by abrupt changes in volatility. The Bitcoin price returns for both periods can be described by an anomalous diffusion process, transitioning from subdiffusion for short intervals to weak superdiffusion over longer time intervals. The characteristic features related to this anomalous behavior studied in the present paper include heavy tails, which can be described using a $q$-Gaussian distribution and correlations. When we sample the autocorrelation of absolute returns, we observe a power-law relationship, indicating time dependency in both periods initially. The ensemble autocorrelation of returns decays rapidly and exhibits periodicity. We fitted the autocorrelation with a power law and a cosine function to capture both the decay and the fluctuation and found that the two periods have distinctive periodicity. Further study involves the analysis of endogenous effects within the Bitcoin time series, which are examined through detrending analysis. We found that both periods are multifractal and present self-similarity in the detrended probability density function (PDF). The Hurst exponent over short time intervals shifts from less than 0.5 ($\sim$ 0.42) in Period 1 to be closer to 0.5 in Period 2 ($\sim$ 0.49), indicating the market is more efficient at short time scales.

In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. 2021), we use Euler-Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of $\mathcal{O}(\epsilon^2)$, $\epsilon>0$, is {$\mathcal{O}(\epsilon^{-\tfrac{4}{2H+1}})$, where $H$ is the Hurst parameter. If one uses a single level MCMC method then the cost is $\mathcal{O}(\epsilon^{-\tfrac{2(2H+3)}{2H+1}})$} to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.

Collaborative perception aims to mitigate the limitations of single-agent perception, such as occlusions, by facilitating data exchange among multiple agents. However, most current works consider a homogeneous scenario where all agents use identity sensors and perception models. In reality, heterogeneous agent types may continually emerge and inevitably face a domain gap when collaborating with existing agents. In this paper, we introduce a new open heterogeneous problem: how to accommodate continually emerging new heterogeneous agent types into collaborative perception, while ensuring high perception performance and low integration cost? To address this problem, we propose HEterogeneous ALliance (HEAL), a novel extensible collaborative perception framework. HEAL first establishes a unified feature space with initial agents via a novel multi-scale foreground-aware Pyramid Fusion network. When heterogeneous new agents emerge with previously unseen modalities or models, we align them to the established unified space with an innovative backward alignment. This step only involves individual training on the new agent type, thus presenting extremely low training costs and high extensibility. To enrich agents' data heterogeneity, we bring OPV2V-H, a new large-scale dataset with more diverse sensor types. Extensive experiments on OPV2V-H and DAIR-V2X datasets show that HEAL surpasses SOTA methods in performance while reducing the training parameters by 91.5% when integrating 3 new agent types. We further implement a comprehensive codebase at: //github.com/yifanlu0227/HEAL

In the evolving landscape of Environmental, Social, and Corporate Governance (ESG) impact assessment, the ML-ESG-2 shared task proposes identifying ESG impact types. To address this challenge, we present a comprehensive system leveraging ensemble learning techniques, capitalizing on early and late fusion approaches. Our approach employs four distinct models: mBERT, FlauBERT-base, ALBERT-base-v2, and a Multi-Layer Perceptron (MLP) incorporating Latent Semantic Analysis (LSA) and Term Frequency-Inverse Document Frequency (TF-IDF) features. Through extensive experimentation, we find that our early fusion ensemble approach, featuring the integration of LSA, TF-IDF, mBERT, FlauBERT-base, and ALBERT-base-v2, delivers the best performance. Our system offers a comprehensive ESG impact type identification solution, contributing to the responsible and sustainable decision-making processes vital in today's financial and corporate governance landscape.

Decision-making with information displays is a key focus of research in areas like explainable AI, human-AI teaming, and data visualization. However, what constitutes a decision problem, and what is required for an experiment to be capable of concluding that human decisions are flawed in some way, remain open to speculation. We present a widely applicable definition of a decision problem synthesized from statistical decision theory and information economics. We argue that to attribute loss in human performance to forms of bias, an experiment must provide participants with the information that a rational agent would need to identify the normative decision. We evaluate the extent to which recent evaluations of decision-making from the literature on AI-assisted decisions achieve this criteria. We find that only 10 (26\%) of 39 studies that claim to identify biased behavior present participants with sufficient information to characterize their behavior as deviating from good decision-making in at least one treatment condition. We motivate the value of studying well-defined decision problems by describing a characterization of performance losses they allow us to conceive. In contrast, the ambiguities of a poorly communicated decision problem preclude normative interpretation. We conclude with recommendations for practice.

The rapid advancement of Large Language Models (LLMs) has demonstrated their vast potential across various domains, attributed to their extensive pretraining knowledge and exceptional generalizability. However, LLMs often encounter challenges in generating harmful content when faced with problematic prompts. To address this problem, existing work attempted to implement a gradient ascent based approach to prevent LLMs from producing harmful output. While these methods can be effective, they frequently impact the model utility in responding to normal prompts. To address this gap, we introduce Selective Knowledge negation Unlearning (SKU), a novel unlearning framework for LLMs, designed to eliminate harmful knowledge while preserving utility on normal prompts. Specifically, SKU is consisted of two stages: harmful knowledge acquisition stage and knowledge negation stage. The first stage aims to identify and acquire harmful knowledge within the model, whereas the second is dedicated to remove this knowledge. SKU selectively isolates and removes harmful knowledge in model parameters, ensuring the model's performance remains robust on normal prompts. Our experiments conducted across various LLM architectures demonstrate that SKU identifies a good balance point between removing harmful information and preserving utility.

In many real-world planning applications, agents might be interested in finding plans whose actions have costs that are as uniform as possible. Such plans provide agents with a sense of stability and predictability, which are key features when humans are the agents executing plans suggested by planning tools. This paper adapts three uniformity metrics to automated planning, and introduce planning-based compilations that allow to lexicographically optimize sum of action costs and action costs uniformity. Experimental results both in well-known and novel planning benchmarks show that the reformulated tasks can be effectively solved in practice to generate uniform plans.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司