亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Uncertainty decomposition refers to the task of decomposing the total uncertainty of a model into data (aleatoric) uncertainty, resulting from the inherent complexity or ambiguity of the data, and model (epistemic) uncertainty, resulting from the lack of knowledge in the model. Performing uncertainty decomposition for large language models (LLMs) is an important step toward improving the reliability, trustworthiness, and interpretability of LLMs, but this research task is very challenging and remains unresolved. The existing canonical method, Bayesian Neural Network (BNN), cannot be applied to LLMs, because BNN requires training and ensembling multiple variants of models, which is infeasible or prohibitively expensive for LLMs. In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarifications ensemble, which bypasses the need to train new models. Rather than ensembling models with different parameters, our approach generates a set of clarifications for the input, feeds them into the fixed LLMs, and ensembles the corresponding predictions. We show that our framework shares a symmetric decomposition structure with BNN. Empirical evaluations demonstrate that the proposed framework provides accurate and reliable uncertainty quantification on various tasks. Code will be made publicly available at //github.com/UCSB-NLP-Chang/llm_uncertainty .

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 賭博機/老虎機 · Principle · Learning · 優化器 ·
2024 年 1 月 8 日

We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to generate "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. The optimization objective to create "algorithmic beliefs," which we term "Algorithmic Information Ratio," represents an intrinsic complexity measure that effectively characterizes the frequentist regret of any algorithm. To the best of our knowledge, this is the first systematical approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, bandit convex optimization, and reinforcement learning.

Pioneering efforts have verified the effectiveness of the diffusion models in exploring the informative uncertainty for recommendation. Considering the difference between recommendation and image synthesis tasks, existing methods have undertaken tailored refinements to the diffusion and reverse process. However, these approaches typically use the highest-score item in corpus for user interest prediction, leading to the ignorance of the user's generalized preference contained within other items, thereby remaining constrained by the data sparsity issue. To address this issue, this paper presents a novel Plug-in Diffusion Model for Recommendation (PDRec) framework, which employs the diffusion model as a flexible plugin to jointly take full advantage of the diffusion-generating user preferences on all items. Specifically, PDRec first infers the users' dynamic preferences on all items via a time-interval diffusion model and proposes a Historical Behavior Reweighting (HBR) mechanism to identify the high-quality behaviors and suppress noisy behaviors. In addition to the observed items, PDRec proposes a Diffusion-based Positive Augmentation (DPA) strategy to leverage the top-ranked unobserved items as the potential positive samples, bringing in informative and diverse soft signals to alleviate data sparsity. To alleviate the false negative sampling issue, PDRec employs Noise-free Negative Sampling (NNS) to select stable negative samples for ensuring effective model optimization. Extensive experiments and analyses on four datasets have verified the superiority of the proposed PDRec over the state-of-the-art baselines and showcased the universality of PDRec as a flexible plugin for commonly-used sequential encoders in different recommendation scenarios. The code is available in //github.com/hulkima/PDRec.

This paper presents a solution for efficiently and accurately solving separable least squares problems with multiple datasets. These problems involve determining linear parameters that are specific to each dataset while ensuring that the nonlinear parameters remain consistent across all datasets. A well-established approach for solving such problems is the variable projection algorithm introduced by Golub and LeVeque, which effectively reduces a separable problem to its nonlinear component. However, this algorithm assumes that the datasets have equal sizes and identical auxiliary model parameters. This article is motivated by a real-world remote sensing application where these assumptions do not apply. Consequently, we propose a generalized algorithm that extends the original theory to overcome these limitations. The new algorithm has been implemented and tested using both synthetic and real satellite data for atmospheric carbon dioxide retrievals. It has also been compared to conventional state-of-the-art solvers, and its advantages are thoroughly discussed. The experimental results demonstrate that the proposed algorithm significantly outperforms all other methods in terms of computation time, while maintaining comparable accuracy and stability. Hence, this novel method can have a positive impact on future applications in remote sensing and could be valuable for other scientific fitting problems with similar properties.

Nonnegative tensor factorization (NTF) has become an important tool for feature extraction and part-based representation with preserved intrinsic structure information from nonnegative high-order data. However, the original NTF methods utilize Euclidean or Kullback-Leibler divergence as the loss function which treats each feature equally leading to the neglect of the side-information of features. To utilize correlation information of features and manifold information of samples, we introduce Wasserstein manifold nonnegative tensor factorization (WMNTF), which minimizes the Wasserstein distance between the distribution of input tensorial data and the distribution of reconstruction. Although some researches about Wasserstein distance have been proposed in nonnegative matrix factorization (NMF), they ignore the spatial structure information of higher-order data. We use Wasserstein distance (a.k.a Earth Mover's distance or Optimal Transport distance) as a metric and add a graph regularizer to a latent factor. Experimental results demonstrate the effectiveness of the proposed method compared with other NMF and NTF methods.

Training students in basic concepts of physics, such as the ones related to mass, volume, or density, is much more complicated than just stating the underlying definitions and laws. One of the reasons for this is that most students have deeply rooted delusions and misconceptions about the behavior of objects, sometimes close to magical thinking. Many innovative and promising technologies, in particular Virtual Reality (VR), can be used to enhance student learning. We compared the effectiveness of a serious immersive game in teaching the concept of density in various conditions: a 2D version in an embedded web browser and a 3D immersive game in VR. We also developed a specific questionnaire to assess students' knowledge improvement. Primary results have shown an increase in learning efficiency using VR. Also, most students were able to see the shortcomings of their initial theories and revise them, which means that they improved their understanding of this topic.

We challenge the perceived consensus that the application of deep learning to solve the automated driving planning task necessarily requires huge amounts of real-world data or highly realistic simulation. Focusing on a roundabout scenario, we show that this requirement can be relaxed in favour of targeted, simplistic simulated data. A benefit is that such data can be easily generated for critical scenarios that are typically underrepresented in realistic datasets. By applying vanilla behavioural cloning almost exclusively to lightweight simulated data, we achieve reliable and comfortable driving in a real-world test vehicle. We leverage an incremental development approach that includes regular in-vehicle testing to identify sim-to-real gaps, targeted data augmentation, and training scenario variations. In addition to a detailed description of the methodology, we share our lessons learned, touching upon scenario generation, simulation features, and evaluation metrics.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司