In-context learning (ICL) has become the default method for using large language models (LLMs), making the exploration of its limitations and understanding the underlying causes crucial. In this paper, we find that ICL falls short of handling specification-heavy tasks, which are tasks with complicated and extensive task specifications, requiring several hours for ordinary humans to master, such as traditional information extraction tasks. The performance of ICL on these tasks mostly cannot reach half of the state-of-the-art results. To explore the reasons behind this failure, we conduct comprehensive experiments on 18 specification-heavy tasks with various LLMs and identify three primary reasons: inability to specifically understand context, misalignment in task schema comprehension with humans, and inadequate long-text understanding ability. Furthermore, we demonstrate that through fine-tuning, LLMs can achieve decent performance on these tasks, indicating that the failure of ICL is not an inherent flaw of LLMs, but rather a drawback of existing alignment methods that renders LLMs incapable of handling complicated specification-heavy tasks via ICL. To substantiate this, we perform dedicated instruction tuning on LLMs for these tasks and observe a notable improvement. We hope the analyses in this paper could facilitate advancements in alignment methods enabling LLMs to meet more sophisticated human demands.
Machine learning (ML) has demonstrated remarkable capabilities across many real-world systems, from predictive modeling to intelligent automation. However, the widespread integration of machine learning also makes it necessary to ensure machine learning-driven decision-making systems do not violate ethical principles and values of society in which they operate. As ML-driven decisions proliferate, particularly in cases involving sensitive attributes such as gender, race, and age, to name a few, the need for equity and impartiality has emerged as a fundamental concern. In situations demanding real-time decision-making, fairness objectives become more nuanced and complex: instantaneous fairness to ensure equity in every time slot, and long-term fairness to ensure fairness over a period of time. There is a growing awareness that real-world systems that operate over long periods and require fairness over different timelines. However, existing approaches mainly address dynamic costs with time-invariant fairness constraints, often disregarding the challenges posed by time-varying fairness constraints. To bridge this gap, this work introduces a framework for ensuring long-term fairness within dynamic decision-making systems characterized by time-varying fairness constraints. We formulate the decision problem with fairness constraints over a period as a constrained online optimization problem. A novel online algorithm, named LoTFair, is presented that solves the problem 'on the fly'. We prove that LoTFair can make overall fairness violations negligible while maintaining the performance over the long run.
Foundational vision-language models such as CLIP are becoming a new paradigm in vision, due to their excellent generalization abilities. However, adapting these models for downstream tasks while maintaining their generalization remains a challenge. In literature, one branch of methods adapts CLIP by learning prompts using visual information. While effective, most of these works require labeled data which is not practical, and often struggle to generalize towards new datasets due to over-fitting on the source data. An alternative approach resorts to training-free methods by generating class descriptions from large language models (LLMs) and perform prompt ensembling. However, these methods often generate class specific prompts that cannot be transferred to other classes, which incur higher costs by generating LLM descriptions for each class separately. In this work, we propose to combine the strengths of these both streams of methods by learning prompts using only text data derived from LLMs. As supervised training of prompts is not trivial due to absence of images, we develop a training approach that allows prompts to extract rich contextual knowledge from LLM data. Moreover, with LLM contextual data mapped within the learned prompts, it enables zero-shot transfer of prompts to new classes and datasets potentially cutting the LLM prompt engineering cost. To the best of our knowledge, this is the first work that learns generalized prompts using text only data. We perform extensive evaluations on 4 benchmarks where our method improves over prior ensembling works while being competitive to those utilizing labeled images. Our code and pre-trained models are available at //github.com/muzairkhattak/ProText.
Multi-objective reinforcement learning (MORL) aims to find a set of high-performing and diverse policies that address trade-offs between multiple conflicting objectives. However, in practice, decision makers (DMs) often deploy only one or a limited number of trade-off policies. Providing too many diversified trade-off policies to the DM not only significantly increases their workload but also introduces noise in multi-criterion decision-making. With this in mind, we propose a human-in-the-loop policy optimization framework for preference-based MORL that interactively identifies policies of interest. Our method proactively learns the DM's implicit preference information without requiring any a priori knowledge, which is often unavailable in real-world black-box decision scenarios. The learned preference information is used to progressively guide policy optimization towards policies of interest. We evaluate our approach against three conventional MORL algorithms that do not consider preference information and four state-of-the-art preference-based MORL algorithms on two MORL environments for robot control and smart grid management. Experimental results fully demonstrate the effectiveness of our proposed method in comparison to the other peer algorithms.
Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT or Anthropic's Claude. % , or Meta's LLaMA-2. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e.~supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties: out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the tradeoff between generalisation and diversity.
Self-supervised learning (SSL) has become the de facto training paradigm of large models where pre-training is followed by supervised fine-tuning using domain-specific data and labels. Hypothesizing that SSL models would learn more generic, hence less biased, representations, this study explores the impact of pre-training and fine-tuning strategies on fairness (i.e., performing equally on different demographic breakdowns). Motivated by human-centric applications on real-world timeseries data, we interpret inductive biases on the model, layer, and metric levels by systematically comparing SSL models to their supervised counterparts. Our findings demonstrate that SSL has the capacity to achieve performance on par with supervised methods while significantly enhancing fairness--exhibiting up to a 27% increase in fairness with a mere 1% loss in performance through self-supervision. Ultimately, this work underscores SSL's potential in human-centric computing, particularly high-stakes, data-scarce application domains like healthcare.
Deploying large language models (LLMs) is challenging because they are memory inefficient and compute-intensive for practical applications. In reaction, researchers train smaller task-specific models by either finetuning with human labels or distilling using LLM-generated labels. However, finetuning and distillation require large amounts of training data to achieve comparable performance to LLMs. We introduce Distilling step-by-step, a new mechanism that (a) trains smaller models that outperform LLMs, and (b) achieves so by leveraging less training data needed by finetuning or distillation. Our method extracts LLM rationales as additional supervision for small models within a multi-task training framework. We present three findings across 4 NLP benchmarks: First, compared to both finetuning and distillation, our mechanism achieves better performance with much fewer labeled/unlabeled training examples. Second, compared to LLMs, we achieve better performance using substantially smaller model sizes. Third, we reduce both the model size and the amount of data required to outperform LLMs; our 770M T5 model outperforms the 540B PaLM model using only 80% of available data on a benchmark task.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.
Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).