亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Predicting the performance of highly configurable software systems is the foundation for performance testing and quality assurance. To that end, recent work has been relying on machine/deep learning to model software performance. However, a crucial yet unaddressed challenge is how to cater for the sparsity inherited from the configuration landscape: the influence of configuration options (features) and the distribution of data samples are highly sparse. In this paper, we propose an approach based on the concept of 'divide-and-learn', dubbed DaL. The basic idea is that, to handle sample sparsity, we divide the samples from the configuration landscape into distant divisions, for each of which we build a regularized Deep Neural Network as the local model to deal with the feature sparsity. A newly given configuration would then be assigned to the right model of division for the final prediction. Experiment results from eight real-world systems and five sets of training data reveal that, compared with the state-of-the-art approaches, DaL performs no worse than the best counterpart on 33 out of 40 cases (within which 26 cases are significantly better) with up to 1.94x improvement on accuracy; requires fewer samples to reach the same/better accuracy; and producing acceptable training overhead. Practically, DaL also considerably improves different global models when using them as the underlying local models, which further strengthens its flexibility. To promote open science, all the data, code, and supplementary figures of this work can be accessed at our repository: //github.com/ideas-labo/DaL.

相關內容

Community management is critical for stakeholders to collaboratively build and sustain communities with socio-technical support. However, most of the existing research has mainly focused on the community members and the platform, with little attention given to the developers who act as intermediaries between the platform and community members and develop tools to support community management. This study focuses on third-party developers (TPDs) for the live streaming platform Twitch and explores their tool development practices. Using a mixed method with in-depth qualitative analysis, we found that TPDs maintain complex relationships with different stakeholders (streamers, viewers, platform, professional developers), and the multi-layered policy restricts their agency regarding idea innovation and tool development. We argue that HCI research should shift its focus from tool users to tool developers with regard to community management. We propose designs to support closer collaboration between TPDS and the platform and professional developers and streamline TPDs' development process with unified toolkits and policy documentation.

To implement important quality attributes of software such as architectural security tactics, developers incorporate API of software frameworks, as building blocks, to avoid re-inventing the wheel and improve their productivity. However, this is a challenging and error-prone task, especially for novice programmers. Despite the advances in the field of API-based program synthesis, the state-of-the-art suffers from a twofold shortcoming when it comes to architectural tactic implementation tasks. First, the specification of the desired tactic must be explicitly expressed, which is out of the knowledge of such programmers. Second, these approaches synthesize a block of code and leave the task of breaking it down into smaller pieces, adding each piece to the proper location in the code, and establishing correct dependencies between each piece and its surrounding environment as well as the other pieces, to the programmer. To mitigate these challenges, we introduce IPSynth, a novel inter-procedural program synthesis approach that automatically learns the specification of the tactic, synthesizes the tactic as inter-related code snippets, and adds them to an existing code base. We extend our first-place award-winning extended abstract recognized at the 36th IEEE/ACM International Conference on Automated Software Engineering (ASE'21) research competition track. In this paper, we provide the details of the approach, present the results of the experimental evaluation of IPSynth, and analyses and insights for a more comprehensive exploration of the research topic. Moreover, we compare the results of our approach to one of the most powerful code generator tools, ChatGPT. Our results show that our approach can accurately locate corresponding spots in the program, synthesize needed code snippets, add them to the program, and outperform ChatGPT in inter-procedural tactic synthesis tasks.

ReachBot, a proposed robotic platform, employs extendable booms as limbs for mobility in challenging environments, such as martian caves. When attached to the environment, ReachBot acts as a parallel robot, with reconfiguration driven by the ability to detach and re-place the booms. This ability enables manipulation-focused scientific objectives: for instance, through operating tools, or handling and transporting samples. To achieve these capabilities, we develop a two-part solution, optimizing for robustness against task uncertainty and stochastic failure modes. First, we present a mixed-integer stance planner to determine the positioning of ReachBot's booms to maximize the task wrench space about the nominal point(s). Second, we present a convex tension planner to determine boom tensions for the desired task wrenches, accounting for the probabilistic nature of microspine grasping. We demonstrate improvements in key robustness metrics from the field of dexterous manipulation, and show a large increase in the volume of the manipulation workspace. Finally, we employ Monte-Carlo simulation to validate the robustness of these methods, demonstrating good performance across a range of randomized tasks and environments, and generalization to cable-driven morphologies. We make our code available at our project webpage, //stanfordasl.github.io/reachbot_manipulation/

ChatGPT has significantly impacted software development practices, providing substantial assistance to developers in a variety of tasks, including coding, testing, and debugging. Despite its widespread adoption, the impact of ChatGPT as an assistant in collaborative coding remains largely unexplored. In this paper, we analyze a dataset of 210 and 370 developers shared conversations with ChatGPT in GitHub pull requests (PRs) and issues. We manually examined the content of the conversations and characterized the dynamics of the sharing behavior, i.e., understanding the rationale behind the sharing, identifying the locations where the conversations were shared, and determining the roles of the developers who shared them. Our main observations are: (1) Developers seek ChatGPT assistance across 16 types of software engineering inquiries. In both conversations shared in PRs and issues, the most frequently encountered inquiry categories include code generation, conceptual questions, how-to guides, issue resolution, and code review. (2) Developers frequently engage with ChatGPT via multi-turn conversations where each prompt can fulfill various roles, such as unveiling initial or new tasks, iterative follow-up, and prompt refinement. Multi-turn conversations account for 33.2% of the conversations shared in PRs and 36.9% in issues. (3) In collaborative coding, developers leverage shared conversations with ChatGPT to facilitate their role-specific contributions, whether as authors of PRs or issues, code reviewers, or collaborators on issues. Our work serves as the first step towards understanding the dynamics between developers and ChatGPT in collaborative software development and opens up new directions for future research on the topic.

The growing interconnection between software systems increases the need for security already at design time. Security-related properties like confidentiality are often analyzed based on data flow diagrams (DFDs). However, manually analyzing DFDs of large software systems is bothersome and error-prone, and adjusting an already deployed software is costly. Additionally, closed analysis ecosystems limit the reuse of modeled information and impede comprehensive statements about a system's security. In this paper, we present an open and extensible framework for data flow analysis. The central element of our framework is our new implementation of a well-validated data-flow-based analysis approach. The framework is compatible with DFDs and can also extract data flows from the Palladio architectural description language. We showcase the extensibility with multiple model and analysis extensions. Our evaluation indicates that we can analyze similar scenarios while achieving higher scalability compared to previous implementations.

An intelligent driving system should be capable of dynamically formulating appropriate driving strategies based on the current environment and vehicle status, while ensuring the security and reliability of the system. However, existing methods based on reinforcement learning and imitation learning suffer from low safety, poor generalization, and inefficient sampling. Additionally, they cannot accurately predict future driving trajectories, and the accurate prediction of future driving trajectories is a precondition for making optimal decisions. To solve these problems, in this paper, we introduce a Safe and Generalized end-to-end Autonomous Driving System (SGADS) for complex and various scenarios. Our SGADS incorporates variational inference with normalizing flows, enabling the intelligent vehicle to accurately predict future driving trajectories. Moreover, we propose the formulation of robust safety constraints. Furthermore, we combine reinforcement learning with demonstrations to augment search process of the agent. The experimental results demonstrate that our SGADS can significantly improve safety performance, exhibit strong generalization, and enhance the training efficiency of intelligent vehicles in complex urban scenarios compared to existing methods.

To evaluate how developers perform differently in solving programming tasks, i.e., which actions and behaviours are more beneficial to them than others and if there are any specific strategies and behaviours that may indicate good versus poor understanding of the task and program given to them, we used the MIMESIS plug-in to record developers' interactions with the IDE. In a series of three studies we investigated the specific behaviour of developers solving a specific programming task. We focused on which source code files they visited, how they related pieces of code and knowledge to others and when and how successful they performed code edits. To cope with the variety of behaviours due to interpersonal differences such as different level of knowledge, development style or problem solving stratiegies, we used an abstraction of the observed behaviour, which enables for a better comparison between different individual attributes such as skill, speed and used stratiegies and also facilitates later automatic evaluation of behaviours, i.e. by using a software to react to.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

北京阿比特科技有限公司