In this work, we introduce two algorithmic frameworks, named Bregman extragradient method and Bregman extrapolation method, for solving saddle point problems. The proposed frameworks not only include the well-known extragradient and optimistic gradient methods as special cases, but also generate new variants such as sparse extragradient and extrapolation methods. With the help of the recent concept of relative Lipschitzness and some Bregman distance related tools, we are able to show certain upper bounds in terms of Bregman distances for gap-type measures. Further, we use those bounds to deduce the convergence rate of $\cO(1/k)$ for the Bregman extragradient and Bregman extrapolation methods applied to solving smooth convex-concave saddle point problems. Our theory recovers the main discovery made in [Mokhtari et al. (2020), SIAM J. Optim., 20, pp. 3230-3251] for more general algorithmic frameworks with weaker assumptions via a conceptually different approach.
Due to spurious correlations, machine learning systems often fail to generalize to environments whose distributions differ from the ones used at training time. Prior work addressing this, either explicitly or implicitly, attempted to find a data representation that has an invariant relationship with the target. This is done by leveraging a diverse set of training environments to reduce the effect of spurious features and build an invariant predictor. However, these methods have generalization guarantees only when both data representation and classifiers come from a linear model class. We propose invariant Causal Representation Learning (iCaRL), an approach that enables out-of-distribution (OOD) generalization in the nonlinear setting (i.e., nonlinear representations and nonlinear classifiers). It builds upon a practical and general assumption: the prior over the data representation (i.e., a set of latent variables encoding the data) given the target and the environment belongs to general exponential family distributions. Based on this, we show that it is possible to identify the data representation up to simple transformations. We also prove that all direct causes of the target can be fully discovered, which further enables us to obtain generalization guarantees in the nonlinear setting. Extensive experiments on both synthetic and real-world datasets show that our approach outperforms a variety of baseline methods. Finally, in the discussion, we further explore the aforementioned assumption and propose a more general hypothesis, called the Agnostic Hypothesis: there exist a set of hidden causal factors affecting both inputs and outcomes. The Agnostic Hypothesis can provide a unifying view of machine learning. More importantly, it can inspire a new direction to explore a general theory for identifying hidden causal factors, which is key to enabling the OOD generalization guarantees.
We study non-convex subgradient flows for training two-layer ReLU neural networks from a convex geometry and duality perspective. We characterize the implicit bias of unregularized non-convex gradient flow as convex regularization of an equivalent convex model. We then show that the limit points of non-convex subgradient flows can be identified via primal-dual correspondence in this convex optimization problem. Moreover, we derive a sufficient condition on the dual variables which ensures that the stationary points of the non-convex objective are the KKT points of the convex objective, thus proving convergence of non-convex gradient flows to the global optimum. For a class of regular training data distributions such as orthogonal separable data, we show that this sufficient condition holds. Therefore, non-convex gradient flows in fact converge to optimal solutions of a convex optimization problem. We present numerical results verifying the predictions of our theory for non-convex subgradient descent.
Optimal transport (OT) has recently found widespread interest in machine learning. It allows to define novel distances between probability measures, which have shown promise in several applications. In this work, we discuss how to computationally approach general non-linear OT problems within the framework of Riemannian manifold optimization. The basis of this is the manifold of doubly stochastic matrices (and their generalization). Even though the manifold geometry is not new, surprisingly, its usefulness for solving general non-linear OT problems has not been popular. To this end, we specifically discuss optimization-related ingredients that allow modeling the OT problem on smooth Riemannian manifolds by exploiting the geometry of the search space. We also discuss extensions where we reuse the developed optimization ingredients. We make available the Manifold optimization-based Optimal Transport, or MOT, repository with codes useful in solving OT problems in Python and Matlab. The codes are available at \url{//github.com/SatyadevNtv/MOT}.
Graph neural networks (GNNs) are one of the most popular approaches to using deep learning on graph-structured data, and they have shown state-of-the-art performances on a variety of tasks. However, according to a recent study, a careful choice of pooling functions, which are used for the aggregation and readout operations in GNNs, is crucial for enabling GNNs to extrapolate. Without proper choices of pooling functions, which varies across tasks, GNNs completely fail to generalize to out-of-distribution data, while the number of possible choices grows exponentially with the number of layers. In this paper, we present GNP, a $L^p$ norm-like pooling function that is trainable end-to-end for any given task. Notably, GNP generalizes most of the widely-used pooling functions. We verify experimentally that simply using GNP for every aggregation and readout operation enables GNNs to extrapolate well on many node-level, graph-level, and set-related tasks; and GNP sometimes performs even better than the best-performing choices among existing pooling functions.
This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.
Most of the existing mapped WENO schemes suffer from either losing high resolutions or generating spurious oscillations in long-run simulations of hyperbolic problems. The purpose of this paper is to amend this commonly reported issue. We firstly present the definition of the locally order-preserving (LOP) mapping. Then, by using a new proposed posteriori adaptive technique, we apply this LOP property to obtain the new mappings from those of the WENO-X schemes where "X" stands for the version of the existing mapped WENO scheme. The essential idea of the posteriori adaptive technique is to identify the global stencil in which the existing mappings fail to preserve the LOP property, and then replace the mapped weights with the weights of the classic WENO-JS scheme to recover the LOP property. We build the resultant mapped WENO schemes and denote them as PoAOP-WENO-X. The numerical results of the 1D linear advection problem with different initial conditions and some standard 2D problems modeled via Euler equations, calculated by the PoAOP-WENO-X schemes, are compared with the ones generated by their non-OP counterparts and the WENO-JS scheme. In summary, the PoAOP-WENO-X schemes enjoy great advantages in terms of attaining high resolutions and in the meantime preventing spurious oscillations near discontinuities when solving the one-dimensional linear advection problems with long output times, and significantly reducing the post-shock oscillations in the simulations of the two-dimensional problems with shock waves.
In this paper we study the convergence of generative adversarial networks (GANs) from the perspective of the informativeness of the gradient of the optimal discriminative function. We show that GANs without restriction on the discriminative function space commonly suffer from the problem that the gradient produced by the discriminator is uninformative to guide the generator. By contrast, Wasserstein GAN (WGAN), where the discriminative function is restricted to $1$-Lipschitz, does not suffer from such a gradient uninformativeness problem. We further show in the paper that the model with a compact dual form of Wasserstein distance, where the Lipschitz condition is relaxed, also suffers from this issue. This implies the importance of Lipschitz condition and motivates us to study the general formulation of GANs with Lipschitz constraint, which leads to a new family of GANs that we call Lipschitz GANs (LGANs). We show that LGANs guarantee the existence and uniqueness of the optimal discriminative function as well as the existence of a unique Nash equilibrium. We prove that LGANs are generally capable of eliminating the gradient uninformativeness problem. According to our empirical analysis, LGANs are more stable and generate consistently higher quality samples compared with WGAN.
The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.
Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.