亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider maintaining strongly connected components (SCCs) of a directed planar graph subject to edge insertions and deletions. We show a data structure maintaining an implicit representation of the SCCs within $\tilde{O}(n^{6/7})$ worst-case time per update. The data structure supports, in $O(\log^2{n})$ time, reporting vertices of any specified SCC (with constant overhead per reported vertex) and aggregating vertex information (e.g., computing the maximum label) over all the vertices of that SCC. Furthermore, it can maintain global information about the structure of SCCs, such as the number of SCCs or the size of the largest SCC. To the best of our knowledge, no fully dynamic SCCs data structures with sublinear update time have been previously known for any major subclass of digraphs. Our result should be contrasted with the known $n^{1-o(1)}$ amortized update time lower bound conditional on SETH, which holds even for dynamically maintaining whether a general digraph has more than two SCCs.

相關內容

如今,服務業占據了IT行業的主要部分。公司越來越喜歡專注于其核心專業領域,并使用IT服務來滿足其所有外圍需求。服務計算是一門新的科學,其目的是研究和更好地理解這個高度流行的產業的基礎。它涵蓋了利用計算和信息技術來建模、創建、操作和管理業務服務的科學和技術。SCC 2019也將為構建這一重要科學的支柱和塑造服務計算的未來做出貢獻。 官網鏈接: · 評分函數 · 泛函 · CP · 得分 ·
2024 年 7 月 30 日

In this paper, we propose Evidential Conformal Prediction (ECP) method for image classifiers to generate the conformal prediction sets. Our method is designed based on a non-conformity score function that has its roots in Evidential Deep Learning (EDL) as a method of quantifying model (epistemic) uncertainty in DNN classifiers. We use evidence that are derived from the logit values of target labels to compute the components of our non-conformity score function: the heuristic notion of uncertainty in CP, uncertainty surprisal, and expected utility. Our extensive experimental evaluation demonstrates that ECP outperforms three state-of-the-art methods for generating CP sets, in terms of their set sizes and adaptivity while maintaining the coverage of true labels.

In this paper, based a novel primal-dual dynamical model with adaptive scaling parameters and Bregman divergences, we propose new accelerated primal-dual proximal gradient splitting methods for solving bilinear saddle-point problems with provable optimal nonergodic convergence rates. For the first, using the spectral analysis, we show that a naive extension of acceleration model for unconstrained optimization problems to a quadratic game is unstable. Motivated by this, we present an accelerated primal-dual hybrid gradient (APDHG) flow which combines acceleration with careful velocity correction. To work with non-Euclidean distances, we also equip our APDHG model with general Bregman divergences and prove the exponential decay of a Lyapunov function. Then, new primal-dual splitting methods are developed based on proper semi-implicit Euler schemes of the continuous model, and the theoretical convergence rates are nonergodic and optimal with respect to the matrix norms,\, Lipschitz constants and convexity parameters. Thanks to the primal and dual scaling parameters, both the algorithm designing and convergence analysis cover automatically the convex and (partially) strongly convex objectives. Moreover, the use of Bregman divergences not only unifies the standard Euclidean distances and general cases in an elegant way, but also makes our methods more flexible and adaptive to problem-dependent metrics.

In this paper, the authors introduce a lightweight dataset to interpret IoT (Internet of Things) activity in preparation to create decoys by replicating known data traffic patterns. The dataset comprises different scenarios in a real network setting. This paper also surveys information related to other IoT datasets along with the characteristics that make our data valuable. Many of the datasets available are synthesized (simulated) or often address industrial applications, while the IoT dataset we present is based on likely smart home scenarios. Further, there are only a limited number of IoT datasets that contain both normal operation and attack scenarios. A discussion of the network configuration and the steps taken to prepare this dataset are presented as we prepare to create replicative patterns for decoy purposes. The dataset, which we refer to as IoT Flex Data, consists of four categories, namely, IoT benign idle, IoT benign active, IoT setup, and malicious (attack) traffic associating the IoT devices with the scenarios under consideration.

In this report, we discuss a simple model for RGB color and polarization images under a unified framework of quaternion nonnegative matrix factorization (QNMF) and present a hierarchical nonnegative least squares method to solve the factor matrices. The convergence analysis of the algorithm is discussed as well. We test the proposed method in the polarization image and color facial image representation. Compared to the state-of-the-art methods, the experimental results demonstrate the effectiveness of the hierarchical nonnegative least squares method for the QNMF model.

This paper presents a novel vision-based proprioception approach for a soft robotic finger that can estimate and reconstruct tactile interactions in both terrestrial and aquatic environments. The key to this system lies in the finger's unique metamaterial structure, which facilitates omni-directional passive adaptation during grasping, protecting delicate objects across diverse scenarios. A compact in-finger camera captures high-framerate images of the finger's deformation during contact, extracting crucial tactile data in real-time. We present a volumetric discretized model of the soft finger and use the geometry constraints captured by the camera to find the optimal estimation of the deformed shape. The approach is benchmarked using a motion capture system with sparse markers and a haptic device with dense measurements. Both results show state-of-the-art accuracies, with a median error of 1.96 mm for overall body deformation, corresponding to 2.1% of the finger's length. More importantly, the state estimation is robust in both on-land and underwater environments as we demonstrate its usage for underwater object shape sensing. This combination of passive adaptation and real-time tactile sensing paves the way for amphibious robotic grasping applications.

In this paper, we infer ingrained remote information in AC power flows using spiking neural network (SNN) as edge processors for efficient coordination of power electronic converters. This work unifies power and information as a means of data normalization using a multi-modal regime in the form of spikes using energy-efficient neuromorphic processing and semantics theory. Firstly, we organize the synchronous realvalued measurements at each edge and translate them into asynchronous spike-based events to collect sparse data for training of SNN at each edge. Instead of relying on error-dependent supervised data-driven learning theory, we exploit the latency-driven unsupervised Hebbian learning rule to obtain modulation pulses for switching of power electronic converters that can now communicate among each other. Not only does this philosophy block exogenous path arrival for cyber attackers by dismissing the cyber layer, it also entails converter adaptation to system reconfiguration and parameter mismatch issues. We conclude this work by validating its energy-efficient and effective online learning performance under various scenarios in modified IEEE 14-bus system and under experimental conditions.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司