亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Two firms are engaged in a competitive prediction task. Each firm has two sources of data -- labeled historical data and unlabeled inference-time data -- and uses the former to derive a prediction model, and the latter to make predictions on new instances. We study data-sharing contracts between the firms. The novelty of our study is to introduce and highlight the differences between contracts that share prediction models only, contracts to share inference-time predictions only, and contracts to share both. Our analysis proceeds on three levels. First, we develop a general Bayesian framework that facilitates our study. Second, we narrow our focus to two natural settings within this framework: (i) a setting in which the accuracy of each firm's prediction model is common knowledge, but the correlation between the respective models is unknown; and (ii) a setting in which two hypotheses exist regarding the optimal predictor, and one of the firms has a structural advantage in deducing it. Within these two settings we study optimal contract choice. More specifically, we find the individually rational and Pareto-optimal contracts for some notable cases, and describe specific settings where each of the different sharing contracts emerge as optimal. Finally, in the third level of our analysis we demonstrate the applicability of our concepts in a synthetic simulation using real loan data.

相關內容

Collaborative filtering (CF) methods for recommendation systems have been extensively researched, ranging from matrix factorization and autoencoder-based to graph filtering-based methods. Recently, lightweight methods that require almost no training have been recently proposed to reduce overall computation. However, existing methods still have room to improve the trade-offs among accuracy, efficiency, and robustness. In particular, there are no well-designed closed-form studies for \emph{balanced} CF in terms of the aforementioned trade-offs. In this paper, we design SVD-AE, a simple yet effective singular vector decomposition (SVD)-based linear autoencoder, whose closed-form solution can be defined based on SVD for CF. SVD-AE does not require iterative training processes as its closed-form solution can be calculated at once. Furthermore, given the noisy nature of the rating matrix, we explore the robustness against such noisy interactions of existing CF methods and our SVD-AE. As a result, we demonstrate that our simple design choice based on truncated SVD can be used to strengthen the noise robustness of the recommendation while improving efficiency. Code is available at //github.com/seoyoungh/svd-ae.

High-level synthesis, source-to-source compilers, and various Design Space Exploration techniques for pragma insertion have significantly improved the Quality of Results of generated designs. These tools offer benefits such as reduced development time and enhanced performance. However, achieving high-quality results often requires additional manual code transformations and tiling selections, which are typically performed separately or as pre-processing steps. Although DSE techniques enable code transformation upfront, the vastness of the search space often limits the exploration of all possible code transformations, making it challenging to determine which transformations are necessary. Additionally, ensuring correctness remains challenging, especially for complex transformations and optimizations. To tackle this obstacle, we first propose a comprehensive framework leveraging HLS compilers. Our system streamlines code transformation, pragma insertion, and tiles size selection for on-chip data caching through a unified optimization problem, aiming to enhance parallelization, particularly beneficial for computation-bound kernels. Them employing a novel Non-Linear Programming (NLP) approach, we simultaneously ascertain transformations, pragmas, and tile sizes, focusing on regular loop-based kernels. Our evaluation demonstrates that our framework adeptly identifies the appropriate transformations, including scenarios where no transformation is necessary, and inserts pragmas to achieve a favorable Quality of Results.

We consider channel coding for discrete memoryless channels (DMCs) with a novel cost constraint that constrains both the mean and the variance of the cost of the codewords. We show that the maximum (asymptotically) achievable rate under the new cost formulation is equal to the capacity-cost function; in particular, the strong converse holds. We further characterize the optimal second-order coding rate of these cost-constrained codes; in particular, the optimal second-order coding rate is finite. We then show that the second-order coding performance is strictly improved with feedback using a new variation of timid/bold coding, significantly broadening the applicability of timid/bold coding schemes from unconstrained compound-dispersion channels to all cost-constrained channels. Equivalent results on the minimum average probability of error are also given.

While powerful methods have been developed for high-dimensional hypothesis testing assuming orthogonal parameters, current approaches struggle to generalize to the more common non-orthogonal case. We propose Stable Distillation (SD), a simple paradigm for iteratively extracting independent pieces of information from observed data, assuming a parametric model. When applied to hypothesis testing for large regression models, SD orthogonalizes the effect estimates of non-orthogonal predictors by judiciously introducing noise into the observed outcomes vector, yielding mutually independent p-values across predictors. Simulations and a real regression example using US campaign contributions show that SD yields a scalable approach for non-orthogonal designs that exceeds or matches the power of existing methods against sparse alternatives. While we only present explicit SD algorithms for hypothesis testing in ordinary least squares and logistic regression, we provide general guidance for deriving and improving the power of SD procedures.

The diversity of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them a promising candidate for use in decision-making. However, they are currently limited by their inability to reliably provide outputs which are explainable and contestable. In this paper, we attempt to reconcile these strengths and weaknesses by introducing a method for supplementing LLMs with argumentative reasoning. Concretely, we introduce argumentative LLMs, a method utilising LLMs to construct argumentation frameworks, which then serve as the basis for formal reasoning in decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by the supplemented LLM may be naturally explained to, and contested by, humans. We demonstrate the effectiveness of argumentative LLMs experimentally in the decision-making task of claim verification. We obtain results that are competitive with, and in some cases surpass, comparable state-of-the-art techniques.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .

北京阿比特科技有限公司