With the attention mechanism, transformers achieve significant empirical successes. Despite the intuitive understanding that transformers perform relational inference over long sequences to produce desirable representations, we lack a rigorous theory on how the attention mechanism achieves it. In particular, several intriguing questions remain open: (a) What makes a desirable representation? (b) How does the attention mechanism infer the desirable representation within the forward pass? (c) How does a pretraining procedure learn to infer the desirable representation through the backward pass? We observe that, as is the case in BERT and ViT, input tokens are often exchangeable since they already include positional encodings. The notion of exchangeability induces a latent variable model that is invariant to input sizes, which enables our theoretical analysis. - To answer (a) on representation, we establish the existence of a sufficient and minimal representation of input tokens. In particular, such a representation instantiates the posterior distribution of the latent variable given input tokens, which plays a central role in predicting output labels and solving downstream tasks. - To answer (b) on inference, we prove that attention with the desired parameter infers the latent posterior up to an approximation error, which is decreasing in input sizes. In detail, we quantify how attention approximates the conditional mean of the value given the key, which characterizes how it performs relational inference over long sequences. - To answer (c) on learning, we prove that both supervised and self-supervised objectives allow empirical risk minimization to learn the desired parameter up to a generalization error, which is independent of input sizes. Particularly, in the self-supervised setting, we identify a condition number that is pivotal to solving downstream tasks.
Two main concepts studied in machine learning theory are generalization gap (difference between train and test error) and excess risk (difference between test error and the minimum possible error). While information-theoretic tools have been used extensively to study the generalization gap of learning algorithms, the information-theoretic nature of excess risk has not yet been fully investigated. In this paper, some steps are taken toward this goal. We consider the frequentist problem of minimax excess risk as a zero-sum game between the algorithm designer and the world. Then, we argue that it is desirable to modify this game in a way that the order of play can be swapped. We then prove that, under some regularity conditions, if the world and designer can play randomly the duality gap is zero and the order of play can be changed. In this case, a Bayesian problem surfaces in the dual representation. This makes it possible to utilize recent information-theoretic results on minimum excess risk in Bayesian learning to provide bounds on the minimax excess risk. We demonstrate the applicability of the results by providing information theoretic insight on two important classes of problems: classification when the hypothesis space has finite VC-dimension, and regularized least squares.
Machine learning poses severe privacy concerns as it has been shown that the learned models can reveal sensitive information about their training data. Many works have investigated the effect of widely-adopted data augmentation (DA) and adversarial training (AT) techniques, termed data enhancement in the paper, on the privacy leakage of machine learning models. Such privacy effects are often measured by membership inference attacks (MIAs), which aim to identify whether a particular example belongs to the training set or not. We propose to investigate privacy from a new perspective called memorization. Through the lens of memorization, we find that previously deployed MIAs produce misleading results as they are less likely to identify samples with higher privacy risks as members compared to samples with low privacy risks. To solve this problem, we deploy a recent attack that can capture individual samples' memorization degrees for evaluation. Through extensive experiments, we unveil non-trivial findings about the connections between three essential properties of machine learning models, including privacy, generalization gap, and adversarial robustness. We demonstrate that, unlike existing results, the generalization gap is shown not highly correlated with privacy leakage. Moreover, stronger adversarial robustness does not necessarily imply that the model is more susceptible to privacy attacks.
Self-supervised learning has significantly improved the performance of many NLP tasks. However, how can self-supervised learning discover useful representations, and why is it better than traditional approaches such as probabilistic models are still largely unknown. In this paper, we focus on the context of topic modeling and highlight a key advantage of self-supervised learning - when applied to data generated by topic models, self-supervised learning can be oblivious to the specific model, and hence is less susceptible to model misspecification. In particular, we prove that commonly used self-supervised objectives based on reconstruction or contrastive samples can both recover useful posterior information for general topic models. Empirically, we show that the same objectives can perform on par with posterior inference using the correct model, while outperforming posterior inference using misspecified models.
In recent years, many video tasks have achieved breakthroughs by utilizing the vision transformer and establishing spatial-temporal decoupling for feature extraction. Although multi-view 3D reconstruction also faces multiple images as input, it cannot immediately inherit their success due to completely ambiguous associations between unordered views. There is not usable prior relationship, which is similar to the temporally-coherence property in a video. To solve this problem, we propose a novel transformer network for Unordered Multiple Images (UMIFormer). It exploits transformer blocks for decoupled intra-view encoding and designed blocks for token rectification that mine the correlation between similar tokens from different views to achieve decoupled inter-view encoding. Afterward, all tokens acquired from various branches are compressed into a fixed-size compact representation while preserving rich information for reconstruction by leveraging the similarities between tokens. We empirically demonstrate on ShapeNet and confirm that our decoupled learning method is adaptable for unordered multiple images. Meanwhile, the experiments also verify our model outperforms existing SOTA methods by a large margin.
Subjective image quality measures based on deep neural networks are very related to models of visual neuroscience. This connection benefits engineering but, more interestingly, the freedom to optimize deep networks in different ways, make them an excellent tool to explore the principles behind visual perception (both human and artificial). Recently, a myriad of networks have been successfully optimized for many interesting visual tasks. Although these nets were not specifically designed to predict image quality or other psychophysics, they have shown surprising human-like behavior. The reasons for this remain unclear. In this work, we perform a thorough analysis of the perceptual properties of pre-trained nets (particularly their ability to predict image quality) by isolating different factors: the goal (the function), the data (learning environment), the architecture, and the readout: selected layer(s), fine-tuning of channel relevance, and use of statistical descriptors as opposed to plain readout of responses. Several conclusions can be drawn. All the models correlate better with human opinion than SSIM. More importantly, some of the nets are in pair of state-of-the-art with no extra refinement or perceptual information. Nets trained for supervised tasks such as classification correlate substantially better with humans than LPIPS (a net specifically tuned for image quality). Interestingly, self-supervised tasks such as jigsaw also perform better than LPIPS. Simpler architectures are better than very deep nets. In simpler nets, correlation with humans increases with depth as if deeper layers were closer to human judgement. This is not true in very deep nets. Consistently with reports on illusions and contrast sensitivity, small changes in the image environment does not make a big difference. Finally, the explored statistical descriptors and concatenations had no major impact.
Probabilistic programming languages (PPLs) make encoding and automatically solving statistical inference problems relatively easy by separating models from the inference algorithm. A popular choice for solving inference problems is to use Monte Carlo inference algorithms. For higher-order functional PPLs, these inference algorithms rely on execution suspension to perform inference, most often enabled through a full continuation-passing style (CPS) transformation. However, standard CPS transformations for PPL compilers introduce significant overhead, a problem the community has generally overlooked. State-of-the-art solutions either perform complete CPS transformations with performance penalties due to unnecessary closure allocations or use efficient, but complex, low-level solutions that are often not available in high-level languages. In contrast to prior work, we develop a new approach that is both efficient and easy to implement using higher-order languages. Specifically, we design a novel static suspension analysis technique that determines the parts of a program that require suspension, given a particular inference algorithm. The analysis result allows selectively CPS transforming the program only where necessary. We formally prove the correctness of the suspension analysis and implement both the suspension analysis and selective CPS transformation in the Miking CorePPL compiler. We evaluate the implementation for a large number of Monte Carlo inference algorithms on real-world models from phylogenetics, epidemiology, and topic modeling. The evaluation results demonstrate significant improvements across all models and inference algorithms.
We investigate the performance of concurrent remote sensing from independent strategic sources, whose goal is to minimize a linear combination of the freshness of information and the updating cost. In the literature, this is often investigated from a static perspective of setting the update rate of the sources a priori, either in a centralized optimal way or with a distributed game-theoretic approach. However, we argue that truly rational sources would better make such a decision with full awareness of the current age of information, resulting in a more efficient implementation of the updating policies. To this end, we investigate the scenario where sources independently perform a stateful optimization of their objective. Their strategic character leads to the formalization of this problem as a Markov game, for which we find the resulting Nash equilibrium. This can be translated into practical smooth threshold policies for their update. The results are eventually tested in a sample scenario, comparing a centralized optimal approach with two distributed approaches with different objectives for the players.
Convolutional neural networks (CNNs) have achieved superior performance but still lack clarity about the nature and properties of feature extraction. In this paper, by analyzing the sensitivity of neural networks to frequencies and scales, we find that neural networks not only have low- and medium-frequency biases but also prefer different frequency bands for different classes, and the scale of objects influences the preferred frequency bands. These observations lead to the hypothesis that neural networks must learn the ability to extract features at various scales and frequencies. To corroborate this hypothesis, we propose a network architecture based on Gaussian derivatives, which extracts features by constructing scale space and employing partial derivatives as local feature extraction operators to separate high-frequency information. This manually designed method of extracting features from different scales allows our GSSDNets to achieve comparable accuracy with vanilla networks on various datasets.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax