亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, short video platforms have gained widespread popularity, making the quality of video recommendations crucial for retaining users. Existing recommendation systems primarily rely on behavioral data, which faces limitations when inferring user preferences due to issues such as data sparsity and noise from accidental interactions or personal habits. To address these challenges and provide a more comprehensive understanding of user affective experience and cognitive activity, we propose EEG-SVRec, the first EEG dataset with User Multidimensional Affective Engagement Labels in Short Video Recommendation. The study involves 30 participants and collects 3,657 interactions, offering a rich dataset that can be used for a deeper exploration of user preference and cognitive activity. By incorporating selfassessment techniques and real-time, low-cost EEG signals, we offer a more detailed understanding user affective experiences (valence, arousal, immersion, interest, visual and auditory) and the cognitive mechanisms behind their behavior. We establish benchmarks for rating prediction by the recommendation algorithm, showing significant improvement with the inclusion of EEG signals. Furthermore, we demonstrate the potential of this dataset in gaining insights into the affective experience and cognitive activity behind user behaviors in recommender systems. This work presents a novel perspective for enhancing short video recommendation by leveraging the rich information contained in EEG signals and multidimensional affective engagement scores, paving the way for future research in short video recommendation systems.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

Advances in 3D reconstruction have enabled high-quality 3D capture, but require a user to collect hundreds to thousands of images to create a 3D scene. We present CAT3D, a method for creating anything in 3D by simulating this real-world capture process with a multi-view diffusion model. Given any number of input images and a set of target novel viewpoints, our model generates highly consistent novel views of a scene. These generated views can be used as input to robust 3D reconstruction techniques to produce 3D representations that can be rendered from any viewpoint in real-time. CAT3D can create entire 3D scenes in as little as one minute, and outperforms existing methods for single image and few-view 3D scene creation. See our project page for results and interactive demos at //cat3d.github.io .

Diffusion models have recently gained significant traction due to their ability to generate high-fidelity and diverse images and videos conditioned on text prompts. In medicine, this application promises to address the critical challenge of data scarcity, a consequence of barriers in data sharing, stringent patient privacy regulations, and disparities in patient population and demographics. By generating realistic and varying medical 2D and 3D images, these models offer a rich, privacy-respecting resource for algorithmic training and research. To this end, we introduce MediSyn, a pair of instruction-tuned text-guided latent diffusion models with the ability to generate high-fidelity and diverse medical 2D and 3D images across specialties and modalities. Through established metrics, we show significant improvement in broad medical image and video synthesis guided by text prompts.

Text-guided image editing is widely needed in daily life, ranging from personal use to professional applications such as Photoshop. However, existing methods are either zero-shot or trained on an automatically synthesized dataset, which contains a high volume of noise. Thus, they still require lots of manual tuning to produce desirable outcomes in practice. To address this issue, we introduce MagicBrush (//osu-nlp-group.github.io/MagicBrush/), the first large-scale, manually annotated dataset for instruction-guided real image editing that covers diverse scenarios: single-turn, multi-turn, mask-provided, and mask-free editing. MagicBrush comprises over 10K manually annotated triplets (source image, instruction, target image), which supports trainining large-scale text-guided image editing models. We fine-tune InstructPix2Pix on MagicBrush and show that the new model can produce much better images according to human evaluation. We further conduct extensive experiments to evaluate current image editing baselines from multiple dimensions including quantitative, qualitative, and human evaluations. The results reveal the challenging nature of our dataset and the gap between current baselines and real-world editing needs.

Recent years have witnessed the rapid development of short videos, which usually contain both visual and audio modalities. Background music is important to the short videos, which can significantly influence the emotions of the viewers. However, at present, the background music of short videos is generally chosen by the video producer, and there is a lack of automatic music recommendation methods for short videos. This paper introduces MVBind, an innovative Music-Video embedding space Binding model for cross-modal retrieval. MVBind operates as a self-supervised approach, acquiring inherent knowledge of intermodal relationships directly from data, without the need of manual annotations. Additionally, to compensate the lack of a corresponding musical-visual pair dataset for short videos, we construct a dataset, SVM-10K(Short Video with Music-10K), which mainly consists of meticulously selected short videos. On this dataset, MVBind manifests significantly improved performance compared to other baseline methods. The constructed dataset and code will be released to facilitate future research.

Analogy-making is central to human cognition, allowing us to adapt to novel situations -- an ability that current AI systems still lack. Most analogy datasets today focus on simple analogies (e.g., word analogies); datasets including complex types of analogies are typically manually curated and very small. We believe that this holds back progress in computational analogy. In this work, we design a data generation pipeline, ParallelPARC (Parallel Paragraph Creator) leveraging state-of-the-art Large Language Models (LLMs) to create complex, paragraph-based analogies, as well as distractors, both simple and challenging. We demonstrate our pipeline and create ProPara-Logy, a dataset of analogies between scientific processes. We publish a gold-set, validated by humans, and a silver-set, generated automatically. We test LLMs' and humans' analogy recognition in binary and multiple-choice settings, and found that humans outperform the best models (~13% gap) after a light supervision. We demonstrate that our silver-set is useful for training models. Lastly, we show challenging distractors confuse LLMs, but not humans. We hope our pipeline will encourage research in this emerging field.

Depth estimation plays a crucial role in various tasks within endoscopic surgery, including navigation, surface reconstruction, and augmented reality visualization. Despite the significant achievements of foundation models in vision tasks, including depth estimation, their direct application to the medical domain often results in suboptimal performance. This highlights the need for efficient adaptation methods to adapt these models to endoscopic depth estimation. We propose Endoscopic Depth Any Camera (EndoDAC) which is an efficient self-supervised depth estimation framework that adapts foundation models to endoscopic scenes. Specifically, we develop the Dynamic Vector-Based Low-Rank Adaptation (DV-LoRA) and employ Convolutional Neck blocks to tailor the foundational model to the surgical domain, utilizing remarkably few trainable parameters. Given that camera information is not always accessible, we also introduce a self-supervised adaptation strategy that estimates camera intrinsics using the pose encoder. Our framework is capable of being trained solely on monocular surgical videos from any camera, ensuring minimal training costs. Experiments demonstrate that our approach obtains superior performance even with fewer training epochs and unaware of the ground truth camera intrinsics. Code is available at //github.com/BeileiCui/EndoDAC.

We explore whether the human ratings of open ended responses can be explained with non-content related features, and if such effects vary across different mathematics-related items. When scoring is rigorously defined and rooted in a measurement framework, educators intend that the features of a response which are indicative of the respondent's level of ability are contributing to scores. However, we find that features such as response length, a grammar score of the response, and a metric relating to key phrase frequency are significant predictors for response ratings. Although our findings are not causally conclusive, they may propel us to be more critical of he way in which we assess open ended responses, especially in high stakes scenarios. Educators take great care to provide unbiased, consistent ratings, but it may be that extraneous features unrelated to those which were intended to be rated are being evaluated.

Diffusion models have emerged as effective tools for generating diverse and high-quality content. However, their capability in high-resolution image generation, particularly for panoramic images, still faces challenges such as visible seams and incoherent transitions. In this paper, we propose TwinDiffusion, an optimized framework designed to address these challenges through two key innovations: Crop Fusion for quality enhancement and Cross Sampling for efficiency optimization. We introduce a training-free optimizing stage to refine the similarity of the adjacent image areas, as well as an interleaving sampling strategy to yield dynamic patches during the cropping process. A comprehensive evaluation is conducted to compare TwinDiffusion with the existing methods, considering factors including coherence, fidelity, compatibility, and efficiency. The results demonstrate the superior performance of our approach in generating seamless and coherent panoramas, setting a new standard in quality and efficiency for panoramic image generation.

Labels are widely used in augmented reality (AR) to display digital information. Ensuring the readability of AR labels requires placing them occlusion-free while keeping visual linkings legible, especially when multiple labels exist in the scene. Although existing optimization-based methods, such as force-based methods, are effective in managing AR labels in static scenarios, they often struggle in dynamic scenarios with constantly moving objects. This is due to their focus on generating layouts optimal for the current moment, neglecting future moments and leading to sub-optimal or unstable layouts over time. In this work, we present RL-LABEL, a deep reinforcement learning-based method for managing the placement of AR labels in scenarios involving moving objects. RL-LABEL considers the current and predicted future states of objects and labels, such as positions and velocities, as well as the user's viewpoint, to make informed decisions about label placement. It balances the trade-offs between immediate and long-term objectives. Our experiments on two real-world datasets show that RL-LABEL effectively learns the decision-making process for long-term optimization, outperforming two baselines (i.e., no view management and a force-based method) by minimizing label occlusions, line intersections, and label movement distance. Additionally, a user study involving 18 participants indicates that RL-LABEL excels over the baselines in aiding users to identify, compare, and summarize data on AR labels within dynamic scenes.

In the rapidly advancing realm of visual generation, diffusion models have revolutionized the landscape, marking a significant shift in capabilities with their impressive text-guided generative functions. However, relying solely on text for conditioning these models does not fully cater to the varied and complex requirements of different applications and scenarios. Acknowledging this shortfall, a variety of studies aim to control pre-trained text-to-image (T2I) models to support novel conditions. In this survey, we undertake a thorough review of the literature on controllable generation with T2I diffusion models, covering both the theoretical foundations and practical advancements in this domain. Our review begins with a brief introduction to the basics of denoising diffusion probabilistic models (DDPMs) and widely used T2I diffusion models. We then reveal the controlling mechanisms of diffusion models, theoretically analyzing how novel conditions are introduced into the denoising process for conditional generation. Additionally, we offer a detailed overview of research in this area, organizing it into distinct categories from the condition perspective: generation with specific conditions, generation with multiple conditions, and universal controllable generation. For an exhaustive list of the controllable generation literature surveyed, please refer to our curated repository at \url{//github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models}.

北京阿比特科技有限公司