亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recovering causal relationships from data is an important problem. Using observational data, one can typically only recover causal graphs up to a Markov equivalence class and additional assumptions or interventional data are needed for complete recovery. In this work, under some standard assumptions, we study causal graph discovery via adaptive interventions with node-dependent interventional costs. For this setting, we show that no algorithm can achieve an approximation guarantee that is asymptotically better than linear in the number of vertices with respect to the verification number; a well-established benchmark for adaptive search algorithms. Motivated by this negative result, we define a new benchmark that captures the worst-case interventional cost for any search algorithm. Furthermore, with respect to this new benchmark, we provide adaptive search algorithms that achieve logarithmic approximations under various settings: atomic, bounded size interventions and generalized cost objectives.

相關內容

Many multivariate data sets exhibit a form of positive dependence, which can either appear globally between all variables or only locally within particular subgroups. A popular notion of positive dependence that allows for localized positivity is positive association. In this work we introduce the notion of extremal positive association for multivariate extremes from threshold exceedances. Via a sufficient condition for extremal association, we show that extremal association generalizes extremal tree models. For H\"usler--Reiss distributions the sufficient condition permits a parametric description that we call the metric property. As the parameter of a H\"usler--Reiss distribution is a Euclidean distance matrix, the metric property relates to research in electrical network theory and Euclidean geometry. We show that the metric property can be localized with respect to a graph and study surrogate likelihood inference. This gives rise to a two-step estimation procedure for locally metrical H\"usler--Reiss graphical models. The second step allows for a simple dual problem, which is implemented via a gradient descent algorithm. Finally, we demonstrate our results on simulated and real data.

The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. Consequently, various methods have been proposed for designing MDS matrices, including search and direct methods. While exhaustive search is suitable for small order MDS matrices, direct constructions are preferred for larger orders due to the vast search space involved. In the literature, there has been extensive research on the direct construction of MDS matrices using both recursive and nonrecursive methods. On the other hand, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer compared to MDS matrices. However, no direct construction method is available in the literature for constructing recursive NMDS matrices. This paper introduces some direct constructions of NMDS matrices in both nonrecursive and recursive settings. Additionally, it presents some direct constructions of nonrecursive MDS matrices from the generalized Vandermonde matrices. We propose a method for constructing involutory MDS and NMDS matrices using generalized Vandermonde matrices. Furthermore, we prove some folklore results that are used in the literature related to the NMDS code.

The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. However, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer, compared to MDS matrices. In this paper, we study NMDS matrices, exploring their construction in both recursive and nonrecursive settings. We provide several theoretical results and explore the hardware efficiency of the construction of NMDS matrices. Additionally, we make comparisons between the results of NMDS and MDS matrices whenever possible. For the recursive approach, we study the DLS matrices and provide some theoretical results on their use. Some of the results are used to restrict the search space of the DLS matrices. We also show that over a field of characteristic 2, any sparse matrix of order $n\geq 4$ with fixed XOR value of 1 cannot be an NMDS when raised to a power of $k\leq n$. Following that, we use the generalized DLS (GDLS) matrices to provide some lightweight recursive NMDS matrices of several orders that perform better than the existing matrices in terms of hardware cost or the number of iterations. For the nonrecursive construction of NMDS matrices, we study various structures, such as circulant and left-circulant matrices, and their generalizations: Toeplitz and Hankel matrices. In addition, we prove that Toeplitz matrices of order $n>4$ cannot be simultaneously NMDS and involutory over a field of characteristic 2. Finally, we use GDLS matrices to provide some lightweight NMDS matrices that can be computed in one clock cycle. The proposed nonrecursive NMDS matrices of orders 4, 5, 6, 7, and 8 can be implemented with 24, 50, 65, 96, and 108 XORs over $\mathbb{F}_{2^4}$, respectively.

Optimizing the allocation of units into treatment groups can help researchers improve the precision of causal estimators and decrease costs when running factorial experiments. However, existing optimal allocation results typically assume a super-population model and that the outcome data comes from a known family of distributions. Instead, we focus on randomization-based causal inference for the finite-population setting, which does not require model specifications for the data or sampling assumptions. We propose exact theoretical solutions for optimal allocation in $2^K$ factorial experiments under complete randomization with A-, D- and E-optimality criteria. We then extend this work to factorial designs with block randomization. We also derive results for optimal allocations when using cost-based constraints. To connect our theory to practice, we provide convenient integer-constrained programming solutions using a greedy optimization approach to find integer optimal allocation solutions for both complete and block randomization. The proposed methods are demonstrated using two real-life factorial experiments conducted by social scientists.

Stochastic optimization has found wide applications in minimizing objective functions in machine learning, which motivates a lot of theoretical studies to understand its practical success. Most of existing studies focus on the convergence of optimization errors, while the generalization analysis of stochastic optimization is much lagging behind. This is especially the case for nonconvex and nonsmooth problems often encountered in practice. In this paper, we initialize a systematic stability and generalization analysis of stochastic optimization on nonconvex and nonsmooth problems. We introduce novel algorithmic stability measures and establish their quantitative connection on the gap between population gradients and empirical gradients, which is then further extended to study the gap between the Moreau envelope of the empirical risk and that of the population risk. To our knowledge, these quantitative connection between stability and generalization in terms of either gradients or Moreau envelopes have not been studied in the literature. We introduce a class of sampling-determined algorithms, for which we develop bounds for three stability measures. Finally, we apply these discussions to derive error bounds for stochastic gradient descent and its adaptive variant, where we show how to achieve an implicit regularization by tuning the step sizes and the number of iterations.

Stochastic Bilevel optimization usually involves minimizing an upper-level (UL) function that is dependent on the arg-min of a strongly-convex lower-level (LL) function. Several algorithms utilize Neumann series to approximate certain matrix inverses involved in estimating the implicit gradient of the UL function (hypergradient). The state-of-the-art StOchastic Bilevel Algorithm (SOBA) [16] instead uses stochastic gradient descent steps to solve the linear system associated with the explicit matrix inversion. This modification enables SOBA to match the lower bound of sample complexity for the single-level counterpart in non-convex settings. Unfortunately, the current analysis of SOBA relies on the assumption of higher-order smoothness for the UL and LL functions to achieve optimality. In this paper, we introduce a novel fully single-loop and Hessian-inversion-free algorithmic framework for stochastic bilevel optimization and present a tighter analysis under standard smoothness assumptions (first-order Lipschitzness of the UL function and second-order Lipschitzness of the LL function). Furthermore, we show that by a slight modification of our approach, our algorithm can handle a more general multi-objective robust bilevel optimization problem. For this case, we obtain the state-of-the-art oracle complexity results demonstrating the generality of both the proposed algorithmic and analytic frameworks. Numerical experiments demonstrate the performance gain of the proposed algorithms over existing ones.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司