亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatic Speaker Diarization (ASD) is an enabling technology with numerous applications, which deals with recordings of multiple speakers, raising special concerns in terms of privacy. In fact, in remote settings, where recordings are shared with a server, clients relinquish not only the privacy of their conversation, but also of all the information that can be inferred from their voices. However, to the best of our knowledge, the development of privacy-preserving ASD systems has been overlooked thus far. In this work, we tackle this problem using a combination of two cryptographic techniques, Secure Multiparty Computation (SMC) and Secure Modular Hashing, and apply them to the two main steps of a cascaded ASD system: speaker embedding extraction and agglomerative hierarchical clustering. Our system is able to achieve a reasonable trade-off between performance and efficiency, presenting real-time factors of 1.1 and 1.6, for two different SMC security settings.

相關內容

SMC:IEEE International Conference on Systems,Man, and Cybernetics Explanation:IEEE系統、人與控制論國際會議。 Publisher:IEEE。 SIT:

Automatic Speech Recognition (ASR) for air traffic control is generally trained by pooling Air Traffic Controller (ATCO) and pilot data into one set. This is motivated by the fact that pilot's voice communications are more scarce than ATCOs. Due to this data imbalance and other reasons (e.g., varying acoustic conditions), the speech from ATCOs is usually recognized more accurately than from pilots. Automatically identifying the speaker roles is a challenging task, especially in the case of the noisy voice recordings collected using Very High Frequency (VHF) receivers or due to the unavailability of the push-to-talk (PTT) signal, i.e., both audio channels are mixed. In this work, we propose to (1) automatically segment the ATCO and pilot data based on an intuitive approach exploiting ASR transcripts and (2) subsequently consider an automatic recognition of ATCOs' and pilots' voice as two separate tasks. Our work is performed on VHF audio data with high noise levels, i.e., signal-to-noise (SNR) ratios below 15 dB, as this data is recognized to be helpful for various speech-based machine-learning tasks. Specifically, for the speaker role identification task, the module is represented by a simple yet efficient knowledge-based system exploiting a grammar defined by the International Civil Aviation Organization (ICAO). The system accepts text as the input, either manually verified annotations or automatically generated transcripts. The developed approach provides an average accuracy in speaker role identification of about 83%. Finally, we show that training an acoustic model for ASR tasks separately (i.e., separate models for ATCOs and pilots) or using a multitask approach is well suited for the noisy data and outperforms the traditional ASR system where all data is pooled together.

Collecting and training over sensitive personal data raise severe privacy concerns in personalized recommendation systems, and federated learning can potentially alleviate the problem by training models over decentralized user data.However, a theoretically private solution in both the training and serving stages of federated recommendation is essential but still lacking.Furthermore, naively applying differential privacy (DP) to the two stages in federated recommendation would fail to achieve a satisfactory trade-off between privacy and utility due to the high-dimensional characteristics of model gradients and hidden representations.In this work, we propose a federated news recommendation method for achieving a better utility in model training and online serving under a DP guarantee.We first clarify the DP definition over behavior data for each round in the life-circle of federated recommendation systems.Next, we propose a privacy-preserving online serving mechanism under this definition based on the idea of decomposing user embeddings with public basic vectors and perturbing the lower-dimensional combination coefficients. We apply a random behavior padding mechanism to reduce the required noise intensity for better utility. Besides, we design a federated recommendation model training method, which can generate effective and public basic vectors for serving while providing DP for training participants. We avoid the dimension-dependent noise for large models via label permutation and differentially private attention modules. Experiments on real-world news recommendation datasets validate that our method achieves superior utility under a DP guarantee in both training and serving of federated news recommendations.

In the field of privacy protection, publishing complete data (especially high-dimensional data sets) is one of the most challenging problems. The common encryption technology can not deal with the attacker to take differential attack to obtain sensitive information, while the existing differential privacy protection algorithm model takes a long time for high-dimensional calculation and needs to add noise to reduce data accuracy, which is not suitable for high-dimensional large data sets. In view of this situation, this paper designs a complete data synthesis scheme to protect data privacy around the concept of "plausible denial". Firstly, the paper provides the theoretical support for the difference between "plausible data" and "plausible data". In the process of scheme designing, this paper decomposes the scheme design into construction data synthesis module and privacy test module, then designs algorithm models for them respectively and realizes the function of privacy protection. When evaluating the feasibility of the scheme, the paper selects the Results of the 2013 community census in the United States as the high-dimensional data set, uses the simulation program that is based on Python to test and analyzes the efficiency and reliability of the data synthesis scheme. This portion focuses on the evaluation of the privacy protection effectiveness of the scheme.

Cloud-edge collaborative inference approach splits deep neural networks (DNNs) into two parts that run collaboratively on resource-constrained edge devices and cloud servers, aiming at minimizing inference latency and protecting data privacy. However, even if the raw input data from edge devices is not directly exposed to the cloud, state-of-the-art attacks targeting collaborative inference are still able to reconstruct the raw private data from the intermediate outputs of the exposed local models, introducing serious privacy risks. In this paper, a secure privacy inference framework for cloud-edge collaboration is proposed, termed CIS, which supports adaptively partitioning the network according to the dynamically changing network bandwidth and fully releases the computational power of edge devices. To mitigate the influence introduced by private perturbation, CIS provides a way to achieve differential privacy protection by adding refined noise to the intermediate layer feature maps offloaded to the cloud. Meanwhile, with a given total privacy budget, the budget is reasonably allocated by the size of the feature graph rank generated by different convolution filters, which makes the inference in the cloud robust to the perturbed data, thus effectively trade-off the conflicting problem between privacy and availability. Finally, we construct a real cloud-edge collaborative inference computing scenario to verify the effectiveness of inference latency and model partitioning on resource-constrained edge devices. Furthermore, the state-of-the-art cloud-edge collaborative reconstruction attack is used to evaluate the practical availability of the end-to-end privacy protection mechanism provided by CIS.

To be successful in single source domain generalization, maximizing diversity of synthesized domains has emerged as one of the most effective strategies. Many of the recent successes have come from methods that pre-specify the types of diversity that a model is exposed to during training, so that it can ultimately generalize well to new domains. However, na\"ive diversity based augmentations do not work effectively for domain generalization either because they cannot model large domain shift, or because the span of transforms that are pre-specified do not cover the types of shift commonly occurring in domain generalization. To address this issue, we present a novel framework that uses adversarially learned transformations (ALT) using a neural network to model plausible, yet hard image transformations that fool the classifier. This network is randomly initialized for each batch and trained for a fixed number of steps to maximize classification error. Further, we enforce consistency between the classifier's predictions on the clean and transformed images. With extensive empirical analysis, we find that this new form of adversarial transformations achieve both objectives of diversity and hardness simultaneously, outperforming all existing techniques on competitive benchmarks for single source domain generalization. We also show that ALT can naturally work with existing diversity modules to produce highly distinct, and large transformations of the source domain leading to state-of-the-art performance.

In this paper, we propose dictionary attacks against speaker verification - a novel attack vector that aims to match a large fraction of speaker population by chance. We introduce a generic formulation of the attack that can be used with various speech representations and threat models. The attacker uses adversarial optimization to maximize raw similarity of speaker embeddings between a seed speech sample and a proxy population. The resulting master voice successfully matches a non-trivial fraction of people in an unknown population. Adversarial waveforms obtained with our approach can match on average 69% of females and 38% of males enrolled in the target system at a strict decision threshold calibrated to yield false alarm rate of 1%. By using the attack with a black-box voice cloning system, we obtain master voices that are effective in the most challenging conditions and transferable between speaker encoders. We also show that, combined with multiple attempts, this attack opens even more to serious issues on the security of these systems.

Given several databases containing person-specific data held by different organizations, Privacy-Preserving Record Linkage (PPRL) aims to identify and link records that correspond to the same entity/individual across different databases based on the matching of personal identifying attributes, such as name and address, without revealing the actual values in these attributes due to privacy concerns. This reference work entry defines the PPRL problem, reviews the literature and key findings, and discusses applications and research challenges.

Recent development in the field of explainable artificial intelligence (XAI) has helped improve trust in Machine-Learning-as-a-Service (MLaaS) systems, in which an explanation is provided together with the model prediction in response to each query. However, XAI also opens a door for adversaries to gain insights into the black-box models in MLaaS, thereby making the models more vulnerable to several attacks. For example, feature-based explanations (e.g., SHAP) could expose the top important features that a black-box model focuses on. Such disclosure has been exploited to craft effective backdoor triggers against malware classifiers. To address this trade-off, we introduce a new concept of achieving local differential privacy (LDP) in the explanations, and from that we establish a defense, called XRand, against such attacks. We show that our mechanism restricts the information that the adversary can learn about the top important features, while maintaining the faithfulness of the explanations.

The selection of smoothing parameter is central to the estimation of penalized splines. The best value of the smoothing parameter is often the one that optimizes a smoothness selection criterion, such as generalized cross-validation error (GCV) and restricted likelihood (REML). To correctly identify the global optimum rather than being trapped in an undesired local optimum, grid search is recommended for optimization. Unfortunately, the grid search method requires a pre-specified search interval that contains the unknown global optimum, yet no guideline is available for providing this interval. As a result, practitioners have to find it by trial and error. To overcome such difficulty, we develop novel algorithms to automatically find this interval. Our automatic search interval has four advantages. (i) It specifies a smoothing parameter range where the associated penalized least squares problem is numerically solvable. (ii) It is criterion-independent so that different criteria, such as GCV and REML, can be explored on the same parameter range. (iii) It is sufficiently wide to contain the global optimum of any criterion, so that for example, the global minimum of GCV and the global maximum of REML can both be identified. (iv) It is computationally cheap compared with the grid search itself, carrying no extra computational burden in practice. Our method is ready to use through our recently developed R package gps (>= version 1.1). It may be embedded in more advanced statistical modeling methods that rely on penalized splines.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

北京阿比特科技有限公司