亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a fast algorithm for the design of smooth paths (or trajectories) that are constrained to lie in a collection of axis-aligned boxes. We consider the case where the number of these safe boxes is large, and basic preprocessing of them (such as finding their intersections) can be done offline. At runtime we quickly generate a smooth path between given initial and terminal positions. Our algorithm designs trajectories that are guaranteed to be safe at all times, and it detects infeasibility whenever such a trajectory does not exist. Our algorithm is based on two subproblems that we can solve very efficiently: finding a shortest path in a weighted graph, and solving (multiple) convex optimal control problems. We demonstrate the proposed path planner on large-scale numerical examples, and we provide an efficient open-source software implementation, fastpathplanning.

相關內容

Despite its success, Model Predictive Control (MPC) often requires intensive task-specific engineering and tuning. On the other hand, Reinforcement Learning (RL) architectures minimize this effort, but need extensive data collection and lack interpretability and safety. An open research question is how to combine the advantages of RL and MPC to exploit the best of both worlds. This paper introduces a novel modular RL architecture that bridges these two approaches. By placing a differentiable MPC in the heart of an actor-critic RL agent, the proposed system enables short-term predictions and optimization of actions based on system dynamics, while retaining the end-to-end training benefits and exploratory behavior of an RL agent. The proposed approach effectively handles two different time-horizon scales: short-term decisions managed by the actor MPC and long term ones managed by the critic network. This provides a promising direction for RL, which combines the advantages of model-based and end-to-end learning methods. We validate the approach in simulated and real-world experiments on a quadcopter platform performing different high-level tasks, and show that the proposed method can learn complex behaviours end-to-end while retaining the properties of an MPC.

To automate harvesting and de-leafing of tomato plants using robots, it is important to search and detect the relevant plant parts, namely tomatoes, peduncles, and petioles. This is challenging due to high levels of occlusion in tomato greenhouses. Active vision is a promising approach which helps robots to deliberately plan camera viewpoints to overcome occlusion and improve perception accuracy. However, current active-vision algorithms cannot differentiate between relevant and irrelevant plant parts, making them inefficient for targeted perception of specific plant parts. We propose a semantic active-vision strategy that uses semantic information to identify the relevant plant parts and prioritises them during view planning using an attention mechanism. We evaluated our strategy using 3D models of tomato plants with varying structural complexity, which closely represented occlusions in the real world. We used a simulated environment to gain insights into our strategy, while ensuring repeatability and statistical significance. At the end of ten viewpoints, our strategy was able to correctly detect 85.5% of the plant parts, about 4 parts more on average per plant compared to a volumetric active-vision strategy. Also, it detected 5 and 9 parts more compared to two predefined strategies and 11 parts more compared to a random strategy. It also performed reliably with a median of 88.9% correctly-detected objects per plant in 96 experiments. Our strategy was also robust to uncertainty in plant and plant-part position, plant complexity, and different viewpoint sampling strategies. We believe that our work could significantly improve the speed and robustness of automated harvesting and de-leafing in tomato crop production.

Adaptive sampling and planning in robotic environmental monitoring are challenging when the target environmental process varies over space and time. The underlying environmental dynamics require the planning module to integrate future environmental changes so that action decisions made earlier do not quickly become outdated. We propose a Monte Carlo tree search method which not only well balances the environment exploration and exploitation in space, but also catches up to the temporal environmental dynamics. This is achieved by incorporating multi-objective optimization and a look-ahead model-predictive rewarding mechanism. We show that by allowing the robot to leverage the simulated and predicted spatiotemporal environmental process, the proposed informative planning approach achieves a superior performance after comparing with other baseline methods in terms of the root mean square error of the environment model and the distance to the ground truth.

Despite recent progress improving the efficiency and quality of motion planning, planning collision-free and dynamically-feasible trajectories in partially-mapped environments remains challenging, since constantly replanning as unseen obstacles are revealed during navigation both incurs significant computational expense and can introduce problematic oscillatory behavior. To improve the quality of motion planning in partial maps, this paper develops a framework that augments sampling-based motion planning to leverage a high-level discrete layer and prior solutions to guide motion-tree expansion during replanning, affording both (i) faster planning and (ii) improved solution coherence. Our framework shows significant improvements in runtime and solution distance when compared with other sampling-based motion planners.

This paper presents a Predictive Maneuver Planning with Deep Reinforcement Learning (PMP-DRL) model for maneuver planning. Traditional rule-based maneuver planning approaches often have to improve their abilities to handle the variabilities of real-world driving scenarios. By learning from its experience, a Reinforcement Learning (RL)-based driving agent can adapt to changing driving conditions and improve its performance over time. Our proposed approach combines a predictive model and an RL agent to plan for comfortable and safe maneuvers. The predictive model is trained using historical driving data to predict the future positions of other surrounding vehicles. The surrounding vehicles' past and predicted future positions are embedded in context-aware grid maps. At the same time, the RL agent learns to make maneuvers based on this spatio-temporal context information. Performance evaluation of PMP-DRL has been carried out using simulated environments generated from publicly available NGSIM US101 and I80 datasets. The training sequence shows the continuous improvement in the driving experiences. It shows that proposed PMP-DRL can learn the trade-off between safety and comfortability. The decisions generated by the recent imitation learning-based model are compared with the proposed PMP-DRL for unseen scenarios. The results clearly show that PMP-DRL can handle complex real-world scenarios and make better comfortable and safe maneuver decisions than rule-based and imitative models.

With the ever-increasing computational demand of DNN training workloads, distributed training has been widely adopted. A combination of data, model and pipeline parallelism strategy, called hybrid parallelism distributed training, is imported to tackle the problem of deploying large-scale models. However, how to evaluate the hybrid strategy and the utilization of each device remains a challenge since existing works either profile on a real large-scale cluster with high time and money costs or only analyze a specific type of parallelism without considering the hybrid parallelism. In this work, we proposed DistSim, an event-based performance model to accurately analyze each device's computation and communication activities with low profiling costs. DistDim breaks down the model into events according to the given distributed strategy, which can be profiled on two nodes. Then DistSim leverages the hierarchy of different parallel strategies to generate the computation and communication event-flow from layer level to model level and finally the activity timeline of each device participating in training. Experiment shows that DistSim can reach \revise{<4\%} errors when predicting distributing training batch time and \revise{<5\%} errors when predicting a single device's activity time in various hybrid strategy settings. We also provide a use-case of DistSim, automatically evaluate and search the best distributed training strategy, and find a hybrid strategy with at most $7.37\times$ throughput improvement.

The value maximization version of the secretary problem is the problem of hiring a candidate with the largest value from a randomly ordered sequence of candidates. In this work, we consider a setting where predictions of candidate values are provided in advance. We propose an algorithm that achieves a nearly optimal value if the predictions are accurate and results in a constant-factor competitive ratio otherwise. We also show that the worst-case competitive ratio of an algorithm cannot be higher than some constant $< 1/\mathrm{e}$, which is the best possible competitive ratio when we ignore predictions, if the algorithm performs nearly optimally when the predictions are accurate. Additionally, for the multiple-choice secretary problem, we propose an algorithm with a similar theoretical guarantee. We empirically illustrate that if the predictions are accurate, the proposed algorithms perform well; meanwhile, if the predictions are inaccurate, performance is comparable to existing algorithms that do not use predictions.

This paper proposes the transition-net, a robust transition strategy that expands the versatility of robot locomotion in the real-world setting. To this end, we start by distributing the complexity of different gaits into dedicated locomotion policies applicable to real-world robots. Next, we expand the versatility of the robot by unifying the policies with robust transitions into a single coherent meta-controller by examining the latent state representations. Our approach enables the robot to iteratively expand its skill repertoire and robustly transition between any policy pair in a library. In our framework, adding new skills does not introduce any process that alters the previously learned skills. Moreover, training of a locomotion policy takes less than an hour with a single consumer GPU. Our approach is effective in the real-world and achieves a 19% higher average success rate for the most challenging transition pairs in our experiments compared to existing approaches.

Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications. With the growing use of unmanned aerial systems (UASs), MOT methods for aerial surveillance is in high demand. Application of MOT in UAS presents specific challenges such as moving sensor, changing zoom levels, dynamic background, illumination changes, obscurations and small objects. In this work, we present a robust object tracking architecture aimed to accommodate for the noise in real-time situations. We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space. DeepEKF utilizes a learned image embedding along with an attention mechanism trained to weight the importance of areas in an image to predict future states. For the visual scoring, we experiment with different similarity measures to calculate distance based on entity appearances, including a convolutional neural network (CNN) encoder, pre-trained using Siamese networks. In initial evaluation experiments, we show that our method, combining scoring structure of the kinematic and visual models within a MHT framework, has improved performance especially in edge cases where entity motion is unpredictable, or the data presents frames with significant gaps.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

北京阿比特科技有限公司