亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a survey of 39 recent papers that aim to study cultural representation and inclusion in large language models. We observe that none of the studies define "culture," which is a complex, multifaceted concept; instead, they probe the models on some specially designed datasets which represent certain aspects of "culture." We call these aspects the proxies of cultures, and organize them across three dimensions of demographic, semantic and linguistic-cultural interaction proxies. We also categorize the probing methods employed. Our analysis indicates that only certain aspects of "culture," such as values and objectives, have been studied, leaving several other interesting and important facets, especially the multitude of semantic domains (Thompson et al., 2020) and aboutness (Hershcovich et al., 2022), unexplored. Two other crucial gaps are the lack of robustness and situatedness of the current methods. Based on these observations, we provide several recommendations for a holistic and practically useful research agenda for furthering cultural inclusion in LLMs and LLM-based applications.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · · 有偏 · 解碼 ·
2024 年 5 月 27 日

In recent years, the task of text-to-SQL translation, which converts natural language questions into executable SQL queries, has gained significant attention for its potential to democratize data access. Despite its promise, challenges such as adapting to unseen databases and aligning natural language with SQL syntax have hindered widespread adoption. To overcome these issues, we introduce SQLformer, a novel Transformer architecture specifically crafted to perform text-to-SQL translation tasks. Our model predicts SQL queries as abstract syntax trees (ASTs) in an autoregressive way, incorporating structural inductive bias in the encoder and decoder layers. This bias, guided by database table and column selection, aids the decoder in generating SQL query ASTs represented as graphs in a Breadth-First Search canonical order. Our experiments demonstrate that SQLformer achieves state-of-the-art performance across six prominent text-to-SQL benchmarks.

Despite the ubiquity of large language models (LLMs) in AI research, the question of embodiment in LLMs remains underexplored, distinguishing them from embodied systems in robotics where sensory perception directly informs physical action. Our investigation navigates the intriguing terrain of whether LLMs, despite their non-embodied nature, effectively capture implicit human intuitions about fundamental, spatial building blocks of language. We employ insights from spatial cognitive foundations developed through early sensorimotor experiences, guiding our exploration through the reproduction of three psycholinguistic experiments. Surprisingly, correlations between model outputs and human responses emerge, revealing adaptability without a tangible connection to embodied experiences. Notable distinctions include polarized language model responses and reduced correlations in vision language models. This research contributes to a nuanced understanding of the interplay between language, spatial experiences, and the computations made by large language models. More at //cisnlp.github.io/Spatial_Schemas/

Using large language models (LLMs) to assist psychological counseling is a significant but challenging task at present. Attempts have been made on improving empathetic conversations or acting as effective assistants in the treatment with LLMs. However, the existing datasets lack consulting knowledge, resulting in LLMs lacking professional consulting competence. Moreover, how to automatically evaluate multi-turn dialogues within the counseling process remains an understudied area. To bridge the gap, we propose CPsyCoun, a report-based multi-turn dialogue reconstruction and evaluation framework for Chinese psychological counseling. To fully exploit psychological counseling reports, a two-phase approach is devised to construct high-quality dialogues while a comprehensive evaluation benchmark is developed for the effective automatic evaluation of multi-turn psychological consultations. Competitive experimental results demonstrate the effectiveness of our proposed framework in psychological counseling. We open-source the datasets and model for future research at //github.com/CAS-SIAT-XinHai/CPsyCoun

We study cultural and socioeconomic diversity in contrastive vision-language models (VLMs). Using a broad range of benchmark datasets and evaluation metrics, we bring to attention several important findings. First, the common filtering of training data to English image-text pairs disadvantages communities of lower socioeconomic status and negatively impacts cultural understanding. Notably, this performance gap is not captured by - and even at odds with - the currently popular evaluation metrics derived from the Western-centric ImageNet and COCO datasets. Second, pretraining with global, unfiltered data before fine-tuning on English content can improve cultural understanding without sacrificing performance on said popular benchmarks. Third, we introduce the task of geo-localization as a novel evaluation metric to assess cultural diversity in VLMs. Our work underscores the value of using diverse data to create more inclusive multimodal systems and lays the groundwork for developing VLMs that better represent global perspectives.

Instruction tuning has become an essential process for optimizing the performance of large language models (LLMs). However, current text-to-text instruction tuning methods, referred to as TextTuning, exhibit significant limitations in terms of generalization, robustness, and controllability, primarily due to the absence of explicit task structures. In this paper, we introduce JsonTuning, a novel structure-to-structure approach for instruction tuning. By utilizing the versatile and structured format of JSON to represent tasks, JsonTuning enhances generalization by enabling the model to comprehend essential task elements and their interrelations, improves robustness by reducing ambiguity, and increases controllability by providing explicit control over the output. We conduct a comprehensive comparative analysis between JsonTuning and TextTuning using various language models and evaluation benchmarks. Our experimental results demonstrate that JsonTuning consistently outperforms TextTuning across a range of applications, showing marked improvements in performance, robustness, and controllability. By addressing the inherent limitations of TextTuning, JsonTuning reveals significant potential for developing more effective and reliable LLMs capable of managing diverse scenarios.

The acceleration of Large Language Models (LLMs) research has opened up new possibilities for evaluating generated texts. They serve as scalable and economical evaluators, but the question of how reliable these evaluators are has emerged as a crucial research question. Prior research efforts in the meta-evaluation of LLMs as judges limit the prompting of an LLM to a single use to obtain a final evaluation decision. They then compute the agreement between LLMs' outputs and human labels. This lacks interpretability in understanding the evaluation capability of LLMs. In light of this challenge, we propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices. Our experiments illustrate that it not only provides a more interpretable window for how well LLMs evaluate, but also leads to improvements up to 39.6% for different LLMs on a variety of meta-evaluation benchmarks.

With the increasing use of large language models (LLMs) in daily life, concerns have emerged regarding their potential misuse and societal impact. Watermarking is proposed to trace the usage of specific models by injecting patterns into their generated texts. An ideal watermark should produce outputs that are nearly indistinguishable from those of the original LLM (imperceptibility), while ensuring a high detection rate (efficacy), even when the text is partially altered (robustness). Despite many methods having been proposed, none have simultaneously achieved all three properties, revealing an inherent trade-off. This paper utilizes a key-centered scheme to unify existing watermarking techniques by decomposing a watermark into two distinct modules: a key module and a mark module. Through this decomposition, we demonstrate for the first time that the key module significantly contributes to the trade-off issues observed in prior methods. Specifically, this reflects the conflict between the scale of the key sampling space during generation and the complexity of key restoration during detection. To this end, we introduce \textbf{WaterPool}, a simple yet effective key module that preserves a complete key sampling space required by imperceptibility while utilizing semantics-based search to improve the key restoration process. WaterPool can integrate with most watermarks, acting as a plug-in. Our experiments with three well-known watermarking techniques show that WaterPool significantly enhances their performance, achieving near-optimal imperceptibility and markedly improving efficacy and robustness (+12.73\% for KGW, +20.27\% for EXP, +7.27\% for ITS).

Transformer is a promising neural network learner, and has achieved great success in various machine learning tasks. Thanks to the recent prevalence of multimodal applications and big data, Transformer-based multimodal learning has become a hot topic in AI research. This paper presents a comprehensive survey of Transformer techniques oriented at multimodal data. The main contents of this survey include: (1) a background of multimodal learning, Transformer ecosystem, and the multimodal big data era, (2) a theoretical review of Vanilla Transformer, Vision Transformer, and multimodal Transformers, from a geometrically topological perspective, (3) a review of multimodal Transformer applications, via two important paradigms, i.e., for multimodal pretraining and for specific multimodal tasks, (4) a summary of the common challenges and designs shared by the multimodal Transformer models and applications, and (5) a discussion of open problems and potential research directions for the community.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司