While large language models (LLMs) now excel at code generation, a key aspect of software development is the art of refactoring: consolidating code into libraries of reusable and readable programs. In this paper, we introduce LILO, a neurosymbolic framework that iteratively synthesizes, compresses, and documents code to build libraries tailored to particular problem domains. LILO combines LLM-guided program synthesis with recent algorithmic advances in automated refactoring from Stitch: a symbolic compression system that efficiently identifies optimal lambda abstractions across large code corpora. To make these abstractions interpretable, we introduce an auto-documentation (AutoDoc) procedure that infers natural language names and docstrings based on contextual examples of usage. In addition to improving human readability, we find that AutoDoc boosts performance by helping LILO's synthesizer to interpret and deploy learned abstractions. We evaluate LILO on three inductive program synthesis benchmarks for string editing, scene reasoning, and graphics composition. Compared to existing neural and symbolic methods - including the state-of-the-art library learning algorithm DreamCoder - LILO solves more complex tasks and learns richer libraries that are grounded in linguistic knowledge.
Autonomous robotic systems capable of learning novel manipulation tasks are poised to transform industries from manufacturing to service automation. However, modern methods (e.g., VIP and R3M) still face significant hurdles, notably the domain gap among robotic embodiments and the sparsity of successful task executions within specific action spaces, resulting in misaligned and ambiguous task representations. We introduce Ag2Manip (Agent-Agnostic representations for Manipulation), a framework aimed at surmounting these challenges through two key innovations: a novel agent-agnostic visual representation derived from human manipulation videos, with the specifics of embodiments obscured to enhance generalizability; and an agent-agnostic action representation abstracting a robot's kinematics to a universal agent proxy, emphasizing crucial interactions between end-effector and object. Ag2Manip's empirical validation across simulated benchmarks like FrankaKitchen, ManiSkill, and PartManip shows a 325% increase in performance, achieved without domain-specific demonstrations. Ablation studies underline the essential contributions of the visual and action representations to this success. Extending our evaluations to the real world, Ag2Manip significantly improves imitation learning success rates from 50% to 77.5%, demonstrating its effectiveness and generalizability across both simulated and physical environments.
Driven by the surge in code generation using large language models (LLMs), numerous benchmarks have emerged to evaluate these LLMs capabilities. We conducted a large-scale human evaluation of HumanEval and MBPP, two popular benchmarks for Python code generation, analyzing their diversity and difficulty. Our findings unveil a critical bias towards a limited set of programming concepts, neglecting most of the other concepts entirely. Furthermore, we uncover a worrying prevalence of easy tasks, potentially inflating model performance estimations. To address these limitations, we propose a novel benchmark, PythonSaga, featuring 185 hand-crafted prompts on a balanced representation of 38 programming concepts across diverse difficulty levels.
Open-source multimodal large language models (MLLMs) excel in various tasks involving textual and visual inputs but still struggle with complex multimodal mathematical reasoning, lagging behind proprietary models like GPT-4V(ision) and Gemini-Pro. Although fine-tuning with intermediate steps (i.e., rationales) elicits some mathematical reasoning skills, the resulting models still fall short in visual comprehension due to inadequate visual-centric supervision, which leads to inaccurate interpretation of math figures. To address this issue, we propose a two-step training pipeline VCAR, which emphasizes the Visual Comprehension training in Addition to mathematical Reasoning learning. It first improves the visual comprehension ability of MLLMs through the visual description generation task, followed by another training step on generating rationales with the assistance of descriptions. Experimental results on two popular benchmarks demonstrate that VCAR substantially outperforms baseline methods solely relying on rationale supervision, especially on problems with high visual demands.
Vision-language pretraining models have achieved great success in supporting multimedia applications by understanding the alignments between images and text. While existing vision-language pretraining models primarily focus on understanding single image associated with a single piece of text, they often ignore the alignment at the intra-document level, consisting of multiple sentences with multiple images. In this work, we propose DocumentCLIP, a salience-aware contrastive learning framework to enforce vision-language pretraining models to comprehend the interaction between images and longer text within documents. Our model is beneficial for the real-world multimodal document understanding like news article, magazines, product descriptions, which contain linguistically and visually richer content. To the best of our knowledge, we are the first to explore multimodal intra-document links by contrastive learning. In addition, we collect a large Wikipedia dataset for pretraining, which provides various topics and structures. Experiments show DocumentCLIP not only outperforms the state-of-the-art baselines in the supervised setting, but also achieves the best zero-shot performance in the wild after human evaluation. Our code is available at //github.com/FuxiaoLiu/DocumentCLIP.
Recent work has made a preliminary attempt to use large language models (LLMs) to solve the stance detection task, showing promising results. However, considering that stance detection usually requires detailed background knowledge, the vanilla reasoning method may neglect the domain knowledge to make a professional and accurate analysis. Thus, there is still room for improvement of LLMs reasoning, especially in leveraging the generation capability of LLMs to simulate specific experts (i.e., multi-agents) to detect the stance. In this paper, different from existing multi-agent works that require detailed descriptions and use fixed experts, we propose a Dynamic Experienced Expert Modeling (DEEM) method which can leverage the generated experienced experts and let LLMs reason in a semi-parametric way, making the experts more generalizable and reliable. Experimental results demonstrate that DEEM consistently achieves the best results on three standard benchmarks, outperforms methods with self-consistency reasoning, and reduces the bias of LLMs.
The advent of large language models (LLMs) has transformed text-based services, enabling capabilities ranging from real-time translation to AI-driven chatbots. However, existing serving systems primarily focus on optimizing server-side aggregate metrics like token generation throughput, ignoring individual user experience with streamed text. As a result, under high and/or bursty load, a significant number of users can receive unfavorable service quality or poor Quality-of-Experience (QoE). In this paper, we first formally define QoE of text streaming services, where text is delivered incrementally and interactively to users, by considering the end-to-end token delivery process throughout the entire interaction with the user. Thereafter, we propose Andes, a QoE-aware serving system that enhances user experience for LLM-enabled text streaming services. At its core, Andes strategically allocates contended GPU resources among multiple requests over time to optimize their QoE. Our evaluations demonstrate that, compared to the state-of-the-art LLM serving systems like vLLM, Andes improves the average QoE by up to 3.2$\times$ under high request rate, or alternatively, it attains up to 1.6$\times$ higher request rate while preserving high QoE.
Fine-grained image retrieval (FGIR) is to learn visual representations that distinguish visually similar objects while maintaining generalization. Existing methods propose to generate discriminative features, but rarely consider the particularity of the FGIR task itself. This paper presents a meticulous analysis leading to the proposal of practical guidelines to identify subcategory-specific discrepancies and generate discriminative features to design effective FGIR models. These guidelines include emphasizing the object (G1), highlighting subcategory-specific discrepancies (G2), and employing effective training strategy (G3). Following G1 and G2, we design a novel Dual Visual Filtering mechanism for the plain visual transformer, denoted as DVF, to capture subcategory-specific discrepancies. Specifically, the dual visual filtering mechanism comprises an object-oriented module and a semantic-oriented module. These components serve to magnify objects and identify discriminative regions, respectively. Following G3, we implement a discriminative model training strategy to improve the discriminability and generalization ability of DVF. Extensive analysis and ablation studies confirm the efficacy of our proposed guidelines. Without bells and whistles, the proposed DVF achieves state-of-the-art performance on three widely-used fine-grained datasets in closed-set and open-set settings.
Deep Learning (DL)-based methods have proven to be effective for software vulnerability detection, with a potential for substantial productivity enhancements for detecting vulnerabilities. Current methods mainly focus on detecting single functions (i.e., intra-procedural vulnerabilities), ignoring the more complex inter-procedural vulnerability detection scenarios in practice. For example, developers routinely engage with program analysis to detect vulnerabilities that span multiple functions within repositories. In addition, the widely-used benchmark datasets generally contain only intra-procedural vulnerabilities, leaving the assessment of inter-procedural vulnerability detection capabilities unexplored. To mitigate the issues, we propose a repository-level evaluation system, named \textbf{VulEval}, aiming at evaluating the detection performance of inter- and intra-procedural vulnerabilities simultaneously. Specifically, VulEval consists of three interconnected evaluation tasks: \textbf{(1) Function-Level Vulnerability Detection}, aiming at detecting intra-procedural vulnerability given a code snippet; \textbf{(2) Vulnerability-Related Dependency Prediction}, aiming at retrieving the most relevant dependencies from call graphs for providing developers with explanations about the vulnerabilities; and \textbf{(3) Repository-Level Vulnerability Detection}, aiming at detecting inter-procedural vulnerabilities by combining with the dependencies identified in the second task. VulEval also consists of a large-scale dataset, with a total of 4,196 CVE entries, 232,239 functions, and corresponding 4,699 repository-level source code in C/C++ programming languages. Our analysis highlights the current progress and future directions for software vulnerability detection.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.