亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Physics-informed neural networks (PINNs) are known to suffer from optimization difficulty. In this work, we reveal the connection between the optimization difficulty of PINNs and activation functions. Specifically, we show that PINNs exhibit high sensitivity to activation functions when solving PDEs with distinct properties. Existing works usually choose activation functions by inefficient trial-and-error. To avoid the inefficient manual selection and to alleviate the optimization difficulty of PINNs, we introduce adaptive activation functions to search for the optimal function when solving different problems. We compare different adaptive activation functions and discuss their limitations in the context of PINNs. Furthermore, we propose to tailor the idea of learning combinations of candidate activation functions to the PINNs optimization, which has a higher requirement for the smoothness and diversity on learned functions. This is achieved by removing activation functions which cannot provide higher-order derivatives from the candidate set and incorporating elementary functions with different properties according to our prior knowledge about the PDE at hand. We further enhance the search space with adaptive slopes. The proposed adaptive activation function can be used to solve different PDE systems in an interpretable way. Its effectiveness is demonstrated on a series of benchmarks. Code is available at //github.com/LeapLabTHU/AdaAFforPINNs.

相關內容

在人工神經網絡中,給定一個輸入或一組輸入,節點的激活函數定義該節點的輸出。一個標準集成電路可以看作是一個由激活函數組成的數字網絡,根據輸入的不同,激活函數可以是開(1)或關(0)。這類似于神經網絡中的線性感知器的行為。然而,只有非線性激活函數允許這樣的網絡只使用少量的節點來計算重要問題,并且這樣的激活函數被稱為非線性。

There has been a recent emphasis on integrating physical models and deep neural networks (DNNs) for SAR target recognition, to improve performance and achieve a higher level of physical interpretability. The attributed scattering center (ASC) parameters garnered the most interest, being considered as additional input data or features for fusion in most methods. However, the performance greatly depends on the ASC optimization result, and the fusion strategy is not adaptable to different types of physical information. Meanwhile, the current evaluation scheme is inadequate to assess the model's robustness and generalizability. Thus, we propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the above issues. PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target, so as to re-weight the feature importance based on knowledge prior. It is flexible and generally applicable to various physical models, and can be integrated into arbitrary DNNs without modifying the original architecture. The experiments involve a rigorous assessment using the proposed OFA, which entails training and validating a model on either sufficient or limited data and evaluating on multiple test sets with different data distributions. Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters. Moreover, we analyze the working mechanism of PIHA and evaluate various PIHA enabled DNNs. The experiments also show PIHA is effective for different physical information. The source code together with the adopted physical information is available at //github.com/XAI4SAR.

A multi-layer perceptron (MLP) is a type of neural networks which has a long history of research and has been studied actively recently in computer vision and graphics fields. One of the well-known problems of an MLP is the capability of expressing high-frequency signals from low-dimensional inputs. There are several studies for input encodings to improve the reconstruction quality of an MLP by applying pre-processing against the input data. This paper proposes a novel input encoding method, local positional encoding, which is an extension of positional and grid encodings. Our proposed method combines these two encoding techniques so that a small MLP learns high-frequency signals by using positional encoding with fewer frequencies under the lower resolution of the grid to consider the local position and scale in each grid cell. We demonstrate the effectiveness of our proposed method by applying it to common 2D and 3D regression tasks where it shows higher-quality results compared to positional and grid encodings, and comparable results to hierarchical variants of grid encoding such as multi-resolution grid encoding with equivalent memory footprint.

Bayesian optimization (BO) is a promising approach for hyperparameter optimization of deep neural networks (DNNs), where each model training can take minutes to hours. In BO, a computationally cheap surrogate model is employed to learn the relationship between parameter configurations and their performance such as accuracy. Parallel BO methods often adopt single manager/multiple workers strategies to evaluate multiple hyperparameter configurations simultaneously. Despite significant hyperparameter evaluation time, the overhead in such centralized schemes prevents these methods to scale on a large number of workers. We present an asynchronous-decentralized BO, wherein each worker runs a sequential BO and asynchronously communicates its results through shared storage. We scale our method without loss of computational efficiency with above 95% of worker's utilization to 1,920 parallel workers (full production queue of the Polaris supercomputer) and demonstrate improvement in model accuracy as well as faster convergence on the CANDLE benchmark from the Exascale computing project.

Artificial neural networks are highly successfully trained with backpropagation. For spiking neural networks, however, a similar gradient descent scheme seems prohibitive due to the sudden, disruptive (dis-)appearance of spikes. Here, we demonstrate exact gradient descent learning based on spiking dynamics that change only continuously. These are generated by neuron models whose spikes vanish and appear at the end of a trial, where they do not influence other neurons anymore. This also enables gradient-based spike addition and removal. We apply our learning scheme to induce and continuously move spikes to desired times, in single neurons and recurrent networks. Further, it achieves competitive performance in a benchmark task using deep, initially silent networks. Our results show how non-disruptive learning is possible despite discrete spikes.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司