亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Higher-order multiway data is ubiquitous in machine learning and statistics and often exhibits community-like structures, where each component (node) along each different mode has a community membership associated with it. In this paper we propose the tensor mixed-membership blockmodel, a generalization of the tensor blockmodel positing that memberships need not be discrete, but instead are convex combinations of latent communities. We establish the identifiability of our model and propose a computationally efficient estimation procedure based on the higher-order orthogonal iteration algorithm (HOOI) for tensor SVD composed with a simplex corner-finding algorithm. We then demonstrate the consistency of our estimation procedure by providing a per-node error bound, which showcases the effect of higher-order structures on estimation accuracy. To prove our consistency result, we develop the $\ell_{2,\infty}$ tensor perturbation bound for HOOI under independent, possibly heteroskedastic, subgaussian noise that may be of independent interest. Our analysis uses a novel leave-one-out construction for the iterates, and our bounds depend only on spectral properties of the underlying low-rank tensor under nearly optimal signal-to-noise ratio conditions such that tensor SVD is computationally feasible. Whereas other leave-one-out analyses typically focus on sequences constructed by analyzing the output of a given algorithm with a small part of the noise removed, our leave-one-out analysis constructions use both the previous iterates and the additional tensor structure to eliminate a potential additional source of error. Finally, we apply our methodology to real and simulated data, including applications to two flight datasets and a trade network dataset, demonstrating some effects not identifiable from the model with discrete community memberships.

相關內容

Formalized $1$-category theory forms a core component of various libraries of mathematical proofs. However, more sophisticated results in fields from algebraic topology to theoretical physics, where objects have "higher structure," rely on infinite-dimensional categories in place of $1$-dimensional categories, and $\infty$-category theory has thusfar proved unamenable to computer formalization. Using a new proof assistant called Rzk, which is designed to support Riehl-Shulman's simplicial extension of homotopy type theory for synthetic $\infty$-category theory, we provide the first formalizations of results from $\infty$-category theory. This includes in particular a formalization of the Yoneda lemma, often regarded as the fundamental theorem of category theory, a theorem which roughly states that an object of a given category is determined by its relationship to all of the other objects of the category. A key feature of our framework is that, thanks to the synthetic theory, many constructions are automatically natural or functorial. We plan to use Rzk to formalize further results from $\infty$-category theory, such as the theory of limits and colimits and adjunctions.

Shape is a powerful tool to understand point sets. A formal notion of shape is given by $\alpha$-shapes, which generalize the convex hull and provide adjustable level of detail. Many real-world point sets have an inherent temporal property as natural processes often happen over time, like lightning strikes during thunderstorms or moving animal swarms. To explore such point sets, where each point is associated with one timestamp, interactive applications may utilize $\alpha$-shapes and allow the user to specify different time windows and $\alpha$-values. We show how to compute the temporal $\alpha$-shape $\alpha_T$, a minimal description of all $\alpha$-shapes over all time windows, in output-sensitive linear time. We also give complexity bounds on $|\alpha_T|$. We use $\alpha_T$ to interactively visualize $\alpha$-shapes of user-specified time windows without having to constantly compute requested $\alpha$-shapes. Experimental results suggest that our approach outperforms an existing approach by a factor of at least $\sim$52 and that the description we compute has reasonable size in practice. The basis for our algorithm is an existing algorithm which computes all Delaunay triangles over all time windows using $\mathcal{O}(1)$ time per triangle. Our approach generalizes to higher dimensions with the same runtime for fixed $d$.

Time series of matrix-valued data are increasingly available in various areas including economics, finance, social science, etc. These data may shed light on the inter-dynamical relationships between two sets of attributes, for instance countries and economic indices. The matrix autoregressive (MAR) model provides a parsimonious approach for analyzing such data. However, the MAR model, being a linear model with parametric constraints, cannot capture the nonlinear patterns in the data, such as regime shifts in the dynamics. We propose a mixture matrix autoregressive (MMAR) model for analyzing potential regime shifts in the dynamics between two attributes, for instance, due to recession vs. blooming, or quiet period vs. pandemic. We propose an EM algorithm for maximum likelihood estimation. We derive some theoretical properties of the proposed method including consistency and asymptotic distribution, and illustrate its performance via simulations and real applications.

Inferring causal structure from data is a challenging task of fundamental importance in science. Observational data are often insufficient to identify a system's causal structure uniquely. While conducting interventions (i.e., experiments) can improve the identifiability, such samples are usually challenging and expensive to obtain. Hence, experimental design approaches for causal discovery aim to minimize the number of interventions by estimating the most informative intervention target. In this work, we propose a novel Gradient-based Intervention Targeting method, abbreviated GIT, that 'trusts' the gradient estimator of a gradient-based causal discovery framework to provide signals for the intervention acquisition function. We provide extensive experiments in simulated and real-world datasets and demonstrate that GIT performs on par with competitive baselines, surpassing them in the low-data regime.

Quantifying variable importance is essential for answering high-stakes questions in fields like genetics, public policy, and medicine. Current methods generally calculate variable importance for a given model trained on a given dataset. However, for a given dataset, there may be many models that explain the target outcome equally well; without accounting for all possible explanations, different researchers may arrive at many conflicting yet equally valid conclusions given the same data. Additionally, even when accounting for all possible explanations for a given dataset, these insights may not generalize because not all good explanations are stable across reasonable data perturbations. We propose a new variable importance framework that quantifies the importance of a variable across the set of all good models and is stable across the data distribution. Our framework is extremely flexible and can be integrated with most existing model classes and global variable importance metrics. We demonstrate through experiments that our framework recovers variable importance rankings for complex simulation setups where other methods fail. Further, we show that our framework accurately estimates the true importance of a variable for the underlying data distribution. We provide theoretical guarantees on the consistency and finite sample error rates for our estimator. Finally, we demonstrate its utility with a real-world case study exploring which genes are important for predicting HIV load in persons with HIV, highlighting an important gene that has not previously been studied in connection with HIV. Code is available at //github.com/jdonnelly36/Rashomon_Importance_Distribution.

A 2018 conjecture of Brewster, McGuinness, Moore, and Noel asserts that for $k \ge 3$, if a graph has chromatic number greater than $k$, then it contains at least as many cycles of length $0 \bmod k$ as the complete graph on $k+1$ vertices. Our main result confirms this in the $k=3$ case by showing every $4$-critical graph contains at least $4$ cycles of length $0 \bmod 3$, and that $K_4$ is the unique such graph achieving the minimum. We make progress on the general conjecture as well, showing that $(k+1)$-critical graphs with minimum degree $k$ have at least as many cycles of length $0\bmod r$ as $K_{k+1}$, provided $k+1 \ne 0 \bmod r$. We also show that $K_{k+1}$ uniquely minimizes the number of cycles of length $1\bmod k$ among all $(k+1)$-critical graphs, strengthening a recent result of Moore and West and extending it to the $k=3$ case.

Generative adversarial networks have recently demonstrated outstanding performance in neural vocoding outperforming best autoregressive and flow-based models. In this paper, we show that this success can be extended to other tasks of conditional audio generation. In particular, building upon HiFi vocoders, we propose a novel HiFi++ general framework for bandwidth extension and speech enhancement. We show that with the improved generator architecture, HiFi++ performs better or comparably with the state-of-the-art in these tasks while spending significantly less computational resources. The effectiveness of our approach is validated through a series of extensive experiments.

0-dimensional persistent homology is known, from a computational point of view, as the easy case. Indeed, given a list of $n$ edges in non-decreasing order of filtration value, one only needs a union-find data structure to keep track of the connected components and we get the persistence diagram in time $O(n\alpha(n))$. The running time is thus usually dominated by sorting the edges in $\Theta(n\log(n))$. A little-known fact is that, in the particularly simple case of studying the sublevel sets of a piecewise-linear function on $\mathbb{R}$ or $\mathbb{S}^1$, persistence can actually be computed in linear time. This note presents a simple algorithm that achieves this complexity and an extension to image persistence. An implementation is available in Gudhi.

In-context learning (ICL) is a new learning paradigm that has gained popularity along with the development of large language models. In this work, we adapt a recently proposed hardness metric, pointwise $\mathcal{V}$-usable information (PVI), to an in-context version (in-context PVI). Compared to the original PVI, in-context PVI is more efficient in that it requires only a few exemplars and does not require fine-tuning. We conducted a comprehensive empirical analysis to evaluate the reliability of in-context PVI. Our findings indicate that in-context PVI estimates exhibit similar characteristics to the original PVI. Specific to the in-context setting, we show that in-context PVI estimates remain consistent across different exemplar selections and numbers of shots. The variance of in-context PVI estimates across different exemplar selections is insignificant, which suggests that in-context PVI are stable. Furthermore, we demonstrate how in-context PVI can be employed to identify challenging instances. Our work highlights the potential of in-context PVI and provides new insights into the capabilities of ICL.

Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.

北京阿比特科技有限公司