亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Team interactions are often multisensory, requiring members to pick up on verbal, visual, spatial and body language cues. Multimodal research, research that captures multiple modes of communication such as audio and visual signals, is therefore integral to understanding these multisensory group communication processes. This type of research has gained traction in biomedical engineering and neuroscience, but it is unclear the extent to which communication and management researchers conduct multimodal research. Our study finds that despite its' utility, multimodal research is underutilized in the communication and management literature's. This paper then covers introductory guidelines for creating new multimodal research including considerations for sensors, data integration and ethical considerations.

相關內容

We present a data-driven approach to the quantitative verification of probabilistic programs and stochastic dynamical models. Our approach leverages neural networks to compute tight and sound bounds for the probability that a stochastic process hits a target condition within finite time. This problem subsumes a variety of quantitative verification questions, from the reachability and safety analysis of discrete-time stochastic dynamical models, to the study of assertion-violation and termination analysis of probabilistic programs. We rely on neural networks to represent supermartingale certificates that yield such probability bounds, which we compute using a counterexample-guided inductive synthesis loop: we train the neural certificate while tightening the probability bound over samples of the state space using stochastic optimisation, and then we formally check the certificate's validity over every possible state using satisfiability modulo theories; if we receive a counterexample, we add it to our set of samples and repeat the loop until validity is confirmed. We demonstrate on a diverse set of benchmarks that, thanks to the expressive power of neural networks, our method yields smaller or comparable probability bounds than existing symbolic methods in all cases, and that our approach succeeds on models that are entirely beyond the reach of such alternative techniques.

Research on generative models to produce human-aligned / human-preferred outputs has seen significant recent contributions. Between text and image-generative models, we narrowed our focus to text-based generative models, particularly to produce captions for images that align with human preferences. In this research, we explored a potential method to amplify the performance of the Deep Neural Network Model to generate captions that are preferred by humans. This was achieved by integrating Supervised Learning and Reinforcement Learning with Human Feedback (RLHF) using the Flickr8k dataset. Also, a novel loss function that is capable of optimizing the model based on human feedback is introduced. In this paper, we provide a concise sketch of our approach and results, hoping to contribute to the ongoing advances in the field of human-aligned generative AI models.

The state-of-the-art face recognition systems are typically trained on a single computer, utilizing extensive image datasets collected from various number of users. However, these datasets often contain sensitive personal information that users may hesitate to disclose. To address potential privacy concerns, we explore the application of federated learning, both with and without secure aggregators, in the context of both supervised and unsupervised face recognition systems. Federated learning facilitates the training of a shared model without necessitating the sharing of individual private data, achieving this by training models on decentralized edge devices housing the data. In our proposed system, each edge device independently trains its own model, which is subsequently transmitted either to a secure aggregator or directly to the central server. To introduce diverse data without the need for data transmission, we employ generative adversarial networks to generate imposter data at the edge. Following this, the secure aggregator or central server combines these individual models to construct a global model, which is then relayed back to the edge devices. Experimental findings based on the CelebA datasets reveal that employing federated learning in both supervised and unsupervised face recognition systems offers dual benefits. Firstly, it safeguards privacy since the original data remains on the edge devices. Secondly, the experimental results demonstrate that the aggregated model yields nearly identical performance compared to the individual models, particularly when the federated model does not utilize a secure aggregator. Hence, our results shed light on the practical challenges associated with privacy-preserving face image training, particularly in terms of the balance between privacy and accuracy.

Data valuation is essential for quantifying data's worth, aiding in assessing data quality and determining fair compensation. While existing data valuation methods have proven effective in evaluating the value of Euclidean data, they face limitations when applied to the increasingly popular graph-structured data. Particularly, graph data valuation introduces unique challenges, primarily stemming from the intricate dependencies among nodes and the exponential growth in value estimation costs. To address the challenging problem of graph data valuation, we put forth an innovative solution, Precedence-Constrained Winter (PC-Winter) Value, to account for the complex graph structure. Furthermore, we develop a variety of strategies to address the computational challenges and enable efficient approximation of PC-Winter. Extensive experiments demonstrate the effectiveness of PC-Winter across diverse datasets and tasks.

Recent research shows that large language models are susceptible to privacy attacks that infer aspects of the training data. However, it is unclear if simpler generative models, like topic models, share similar vulnerabilities. In this work, we propose an attack against topic models that can confidently identify members of the training data in Latent Dirichlet Allocation. Our results suggest that the privacy risks associated with generative modeling are not restricted to large neural models. Additionally, to mitigate these vulnerabilities, we explore differentially private (DP) topic modeling. We propose a framework for private topic modeling that incorporates DP vocabulary selection as a pre-processing step, and show that it improves privacy while having limited effects on practical utility.

We propose a multi-agent system that enables groups of agents to collaborate and work autonomously to execute tasks. Groups can work in a decentralized manner and can adapt to dynamic changes in the environment. Groups of agents solve assigned tasks by exploring the solution space cooperatively based on the highest reward first. The tasks have a dependency structure associated with them. We rigorously evaluated the performance of the system and the individual group performance using centralized and decentralized control approaches for task distribution. Based on the results, the centralized approach is more efficient for systems with a less-dependent system $G_{18}$, while the decentralized approach performs better for systems with a highly-dependent system $G_{40}$. We also evaluated task allocation to groups that do not have interdependence. Our findings reveal that there was significantly less difference in the number of tasks allocated to each group in a less-dependent system than in a highly-dependent one. The experimental results showed that a large number of small-size cooperative groups of agents unequivocally improved the system's performance compared to a small number of large-size cooperative groups of agents. Therefore, it is essential to identify the optimal group size for a system to enhance its performance.

We present ALTO, a network orchestrator for efficiently serving compound AI systems such as pipelines of language models. ALTO achieves high throughput and low latency by taking advantage of an optimization opportunity specific to generative language models: streaming intermediate outputs. As language models produce outputs token by token, ALTO exposes opportunities to stream intermediate outputs between stages when possible. We highlight two new challenges of correctness and load balancing which emerge when streaming intermediate data across distributed pipeline stage instances. We also motivate the need for an aggregation-aware routing interface and distributed prompt-aware scheduling to address these challenges. We demonstrate the impact of ALTO's partial output streaming on a complex chatbot verification pipeline, increasing throughput by up to 3x for a fixed latency target of 4 seconds / request while also reducing tail latency by 1.8x compared to a baseline serving approach.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

In the era of deep learning, modeling for most NLP tasks has converged to several mainstream paradigms. For example, we usually adopt the sequence labeling paradigm to solve a bundle of tasks such as POS-tagging, NER, Chunking, and adopt the classification paradigm to solve tasks like sentiment analysis. With the rapid progress of pre-trained language models, recent years have observed a rising trend of Paradigm Shift, which is solving one NLP task by reformulating it as another one. Paradigm shift has achieved great success on many tasks, becoming a promising way to improve model performance. Moreover, some of these paradigms have shown great potential to unify a large number of NLP tasks, making it possible to build a single model to handle diverse tasks. In this paper, we review such phenomenon of paradigm shifts in recent years, highlighting several paradigms that have the potential to solve different NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

北京阿比特科技有限公司