Blockchain technology has become a trusted method for establishing secure and transparent transactions through a distributed, encrypted network. The operation of blockchain is governed by consensus algorithms, among which Proof of Stake (PoS) is popular yet has its drawbacks, notably the potential for centralising power in nodes with larger stakes or higher rewards. Fuzzychain, our proposed solution, introduces the use of fuzzy sets to define stake semantics, promoting decentralised and distributed processing control. This system selects validators based on their degree of membership to the stake fuzzy sets rather than just the size of their stakes. As a pioneer proposal in applying fuzzy sets to blockchain, Fuzzychain aims to rectify PoS's limitations. Our results indicate that Fuzzychain not only matches PoS in functionality but also ensures a fairer distribution of stakes among validators, leading to more inclusive validator selection and a better-distributed network.
The construction industry has been traditionally slow in adopting digital technologies. However, these are becoming increasingly necessary due to a plentitude of challenges, such as a shortage of skilled labor and decreasing productivity levels compared to other industries. Autonomous robotic systems can alleviate this problem, but the software development process for these systems is heavily driven by data, a resource usually challenging to find in the construction domain due to the lack of public availability. In our work, we therefore provide a dataset of 14,805 RGB images with segmentation labels for reinforced concrete construction and make it publicly available. We conduct a detailed analysis of our dataset and discuss how to deal with labeling inconsistencies. Furthermore, we establish baselines for the YOLOv8L-seg, DeepLabV3, and U-Net segmentation models and investigate the influence of data availability and label inconsistencies on the performance of these models. Our study showed that the models are precise in their predictions but would benefit from more data to increase the number of recalled instances. Label inconsistencies had a negligible effect on model performance, and we, therefore, advocate for a crowd-sourced dataset to boost the development of autonomous robotic systems in the construction industry.
Infrared imaging technology has gained significant attention for its reliable sensing ability in low visibility conditions, prompting many studies to convert the abundant RGB images to infrared images. However, most existing image translation methods treat infrared images as a stylistic variation, neglecting the underlying physical laws, which limits their practical application. To address these issues, we propose a Physics-Informed Diffusion (PID) model for translating RGB images to infrared images that adhere to physical laws. Our method leverages the iterative optimization of the diffusion model and incorporates strong physical constraints based on prior knowledge of infrared laws during training. This approach enhances the similarity between translated infrared images and the real infrared domain without increasing extra training parameters. Experimental results demonstrate that PID significantly outperforms existing state-of-the-art methods. Our code is available at //github.com/fangyuanmao/PID.
Continual Learning (CL) is crucial for enabling networks to dynamically adapt as they learn new tasks sequentially, accommodating new data and classes without catastrophic forgetting. Diverging from conventional perspectives on CL, our paper introduces a new perspective wherein forgetting could actually benefit the sequential learning paradigm. Specifically, we present BiasPruner, a CL framework that intentionally forgets spurious correlations in the training data that could lead to shortcut learning. Utilizing a new bias score that measures the contribution of each unit in the network to learning spurious features, BiasPruner prunes those units with the highest bias scores to form a debiased subnetwork preserved for a given task. As BiasPruner learns a new task, it constructs a new debiased subnetwork, potentially incorporating units from previous subnetworks, which improves adaptation and performance on the new task. During inference, BiasPruner employs a simple task-agnostic approach to select the best debiased subnetwork for predictions. We conduct experiments on three medical datasets for skin lesion classification and chest X-Ray classification and demonstrate that BiasPruner consistently outperforms SOTA CL methods in terms of classification performance and fairness. Our code is available here.
Recent advances in machine learning (ML) have spotlighted the pressing need for computing architectures that bridge the gap between memory bandwidth and processing power. The advent of deep neural networks has pushed traditional Von Neumann architectures to their limits due to the high latency and energy consumption costs associated with data movement between the processor and memory for these workloads. One of the solutions to overcome this bottleneck is to perform computation within the main memory through processing-in-memory (PIM), thereby limiting data movement and the costs associated with it. However, DRAM-based PIM struggles to achieve high throughput and energy efficiency due to internal data movement bottlenecks and the need for frequent refresh operations. In this work, we introduce OPIMA, a PIM-based ML accelerator, architected within an optical main memory. OPIMA has been designed to leverage the inherent massive parallelism within main memory while performing high-speed, low-energy optical computation to accelerate ML models based on convolutional neural networks. We present a comprehensive analysis of OPIMA to guide design choices and operational mechanisms. Additionally, we evaluate the performance and energy consumption of OPIMA, comparing it with conventional electronic computing systems and emerging photonic PIM architectures. The experimental results show that OPIMA can achieve 2.98x higher throughput and 137x better energy efficiency than the best-known prior work.
Previous knowledge distillation (KD) methods mostly focus on compressing network architectures, which is not thorough enough in deployment as some costs like transmission bandwidth and imaging equipment are related to the image size. Therefore, we propose Pixel Distillation that extends knowledge distillation into the input level while simultaneously breaking architecture constraints. Such a scheme can achieve flexible cost control for deployment, as it allows the system to adjust both network architecture and image quality according to the overall requirement of resources. Specifically, we first propose an input spatial representation distillation (ISRD) mechanism to transfer spatial knowledge from large images to student's input module, which can facilitate stable knowledge transfer between CNN and ViT. Then, a Teacher-Assistant-Student (TAS) framework is further established to disentangle pixel distillation into the model compression stage and input compression stage, which significantly reduces the overall complexity of pixel distillation and the difficulty of distilling intermediate knowledge. Finally, we adapt pixel distillation to object detection via an aligned feature for preservation (AFP) strategy for TAS, which aligns output dimensions of detectors at each stage by manipulating features and anchors of the assistant. Comprehensive experiments on image classification and object detection demonstrate the effectiveness of our method. Code is available at //github.com/gyguo/PixelDistillation.
Product review generation is an important task in recommender systems, which could provide explanation and persuasiveness for the recommendation. Recently, Large Language Models (LLMs, e.g., ChatGPT) have shown superior text modeling and generating ability, which could be applied in review generation. However, directly applying the LLMs for generating reviews might be troubled by the ``polite'' phenomenon of the LLMs and could not generate personalized reviews (e.g., negative reviews). In this paper, we propose Review-LLM that customizes LLMs for personalized review generation. Firstly, we construct the prompt input by aggregating user historical behaviors, which include corresponding item titles and reviews. This enables the LLMs to capture user interest features and review writing style. Secondly, we incorporate ratings as indicators of satisfaction into the prompt, which could further improve the model's understanding of user preferences and the sentiment tendency control of generated reviews. Finally, we feed the prompt text into LLMs, and use Supervised Fine-Tuning (SFT) to make the model generate personalized reviews for the given user and target item. Experimental results on the real-world dataset show that our fine-tuned model could achieve better review generation performance than existing close-source LLMs.
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.