亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

LiDAR is a sensor system that supports autonomous driving by gathering precise geometric information about the scene. Exploiting this information for perception is interesting as the amount of available data increases. As the quantitative performance of various perception tasks has improved, the focus has shifted from source-to-source perception to domain adaptation and domain generalization for perception. These new goals require access to a large variety of domains for evaluation. Unfortunately, the various annotation strategies of data providers complicate the computation of cross-domain performance based on the available data This paper provides a novel dataset, specifically designed for cross-domain evaluation to make it easier to evaluate the performance of various source datasets. Alongside the dataset, a flexible online benchmark is provided to ensure a fair comparison across methods.

相關內容

Sample selection models represent a common methodology for correcting bias induced by data missing not at random. It is well known that these models are not empirically identifiable without exclusion restrictions. In other words, some variables predictive of missingness do not affect the outcome model of interest. The drive to establish this requirement often leads to the inclusion of irrelevant variables in the model. A recent proposal uses adaptive LASSO to circumvent this problem, but its performance depends on the so-called covariance assumption, which can be violated in small to moderate samples. Additionally, there are no tools yet for post-selection inference for this model. To address these challenges, we propose two families of spike-and-slab priors to conduct Bayesian variable selection in sample selection models. These prior structures allow for constructing a Gibbs sampler with tractable conditionals, which is scalable to the dimensions of practical interest. We illustrate the performance of the proposed methodology through a simulation study and present a comparison against adaptive LASSO and stepwise selection. We also provide two applications using publicly available real data. An implementation and code to reproduce the results in this paper can be found at //github.com/adam-iqbal/selection-spike-slab

We consider the estimation of generalized additive models using basis expansions coupled with Bayesian model selection. Although Bayesian model selection is an intuitively appealing tool for regression splines, its use has traditionally been limited to Gaussian additive regression because of the availability of a tractable form of the marginal model likelihood. We extend the method to encompass the exponential family of distributions using the Laplace approximation to the likelihood. Although the approach exhibits success with any Gaussian-type prior distribution, there remains a lack of consensus regarding the best prior distribution for nonparametric regression through model selection. We observe that the classical unit information prior distribution for variable selection may not be well-suited for nonparametric regression using basis expansions. Instead, our investigation reveals that mixtures of g-priors are more suitable. We consider various mixtures of g-priors to evaluate the performance in estimating generalized additive models. Furthermore, we conduct a comparative analysis of several priors for knots to identify the most practically effective strategy. Our extensive simulation studies demonstrate the superiority of model selection-based approaches over other Bayesian methods.

This research focuses on trajectory planning problems for autonomous vehicles utilizing numerical optimal control techniques. The study reformulates the constrained optimization problem into a nonlinear programming problem, incorporating explicit collision avoidance constraints. We present three novel, exact formulations to describe collision constraints. The first formulation is derived from a proposition concerning the separation of a point and a convex set. We prove the separating proposition through De Morgan's laws. Then, leveraging the hyperplane separation theorem we propose two efficient reformulations. Compared with the existing dual formulations and the first formulation, they significantly reduce the number of auxiliary variables to be optimized and inequality constraints within the nonlinear programming problem. Finally, the efficacy of the proposed formulations is demonstrated in the context of typical autonomous parking scenarios compared with state of the art. For generality, we design three initial guesses to assess the computational effort required for convergence to solutions when using the different collision formulations. The results illustrate that the scheme employing De Morgan's laws performs equally well with those utilizing dual formulations, while the other two schemes based on hyperplane separation theorem exhibit the added benefit of requiring lower computational resources.

The quality of training datasets for deep neural networks is a key factor contributing to the accuracy of resulting models. This effect is amplified in difficult tasks such as object detection. Dealing with errors in datasets is often limited to accepting that some fraction of examples are incorrect, estimating their confidence, and either assigning appropriate weights or ignoring uncertain ones during training. In this work, we propose a different approach. We introduce the Confident Learning for Object Detection (CLOD) algorithm for assessing the quality of each label in object detection datasets, identifying missing, spurious, mislabeled, and mislocated bounding boxes and suggesting corrections. By focusing on finding incorrect examples in the training datasets, we can eliminate them at the root. Suspicious bounding boxes can be reviewed to improve the quality of the dataset, leading to better models without further complicating their already complex architectures. The proposed method is able to point out nearly 80% of artificially disturbed bounding boxes with a false positive rate below 0.1. Cleaning the datasets by applying the most confident automatic suggestions improved mAP scores by 16% to 46%, depending on the dataset, without any modifications to the network architectures. This approach shows promising potential in rectifying state-of-the-art object detection datasets.

Modern Code Review (MCR) is an informal tool-assisted quality assurance practice. It relies on the asynchronous communication among the authors of code changes and reviewers, who are developers that provide feedback. However, from candidate developers, some are able to provide better feedback than others given a particular context. The selection of reviewers is thus an important task, which can benefit from automated support. Many approaches have been proposed in this direction, using for example data from code review repositories to recommend reviewers. In this paper, we propose the use of team-related features to improve the performance of predictions that are helpful to build code reviewer recommenders, with our target predictions being the identification of reviewers that would participate in a review and the provided amount of feedback. We evaluate the prediction power of these features, which are related to code ownership, workload, and team relationship. This evaluation was done by carefully addressing challenges imposed by the MCR domain, such as temporal aspects of the dataset and unbalanced classes. Moreover, given that it is currently unknown how much past data is needed for building MCR prediction models with acceptable performance, we explore the amount of past data used to build prediction models. Our results show that, individually, features related to code ownership have the best prediction power. However, based on feature selection, we conclude that all proposed features together with lines of code can make the best predictions for both reviewer participation and amount of feedback. Regarding the amount of past data, the timeframes of 3, 6, 9, and 12 months of data produce similar results. Therefore, models can be trained considering short timeframes, thus reducing the computational costs with negligible impact in the prediction performance ...

In Bayesian statistics, the marginal likelihood (ML) is the key ingredient needed for model comparison and model averaging. Unfortunately, estimating MLs accurately is notoriously difficult, especially for models where posterior simulation is not possible. Recently, Christensen (2023) introduced the concept of permutation counting, which can accurately estimate MLs of models for exchangeable binary responses. Such data arise in a multitude of statistical problems, including binary classification, bioassay and sensitivity testing. Permutation counting is entirely likelihood-free and works for any model from which a random sample can be generated, including nonparametric models. Here we present perms, a package implementing permutation counting. As a result of extensive optimisation efforts, perms is computationally efficient and able to handle large data problems. It is available as both an R package and a Python library. A broad gallery of examples illustrating its usage is provided, which includes both standard parametric binary classification and novel applications of nonparametric models, such as changepoint analysis. We also cover the details of the implementation of perms and illustrate its computational speed via a simple simulation study.

The recent proliferation of computers and the internet have opened new opportunities for collecting and processing data. However, such data are often obtained without a well-planned probability survey design. Such non-probability based samples cannot be automatically regarded as representative of the population of interest. Several classes of methods for estimation and inferences from non-probability samples have been developed in recent years. The quasi-randomization methods assume that non-probability sample selection is governed by an underlying latent random mechanism. The basic idea is to use information collected from a probability ("reference") sample to uncover latent non-probability survey participation probabilities (also known as "propensity scores") and use them in estimation of target finite population parameters. In this paper, we review and compare theoretical properties of recently developed methods of estimation survey participation probabilities and study their relative performances in simulations.

Text-to-Image (T2I) generation methods based on diffusion model have garnered significant attention in the last few years. Although these image synthesis methods produce visually appealing results, they frequently exhibit spelling errors when rendering text within the generated images. Such errors manifest as missing, incorrect or extraneous characters, thereby severely constraining the performance of text image generation based on diffusion models. To address the aforementioned issue, this paper proposes a novel approach for text image generation, utilizing a pre-trained diffusion model (i.e., Stable Diffusion [27]). Our approach involves the design and training of a light-weight character-level text encoder, which replaces the original CLIP encoder and provides more robust text embeddings as conditional guidance. Then, we fine-tune the diffusion model using a large-scale dataset, incorporating local attention control under the supervision of character-level segmentation maps. Finally, by employing an inference stage refinement process, we achieve a notably high sequence accuracy when synthesizing text in arbitrarily given images. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art. Furthermore, we showcase several potential applications of the proposed UDiffText, including text-centric image synthesis, scene text editing, etc. Code and model will be available at //github.com/ZYM-PKU/UDiffText .

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司