亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Lipschitz bandits is a prominent version of multi-armed bandits that studies large, structured action spaces such as the [0,1] interval, where similar actions are guaranteed to have similar rewards. A central theme here is the adaptive discretization of the action space, which gradually ``zooms in'' on the more promising regions thereof. The goal is to take advantage of ``nicer'' problem instances, while retaining near-optimal worst-case performance. While the stochastic version of the problem is well-understood, the general version with adversarial rewards is not. We provide the first algorithm for adaptive discretization in the adversarial version, and derive instance-dependent regret bounds. In particular, we recover the worst-case optimal regret bound for the adversarial version, and the instance-dependent regret bound for the stochastic version. Further, an application of our algorithm to dynamic pricing (where a seller repeatedly adjusts prices for a product) enjoys these regret bounds without any smoothness assumptions.

相關內容

We consider an iterative procedure to solve quasilinear elliptic systems with $p$-growth. The scheme was first considered by Koshelev in the quadratic case $p=2$. We present numerical applications as well as applications to higher regularity properties.

In this work, we design provably (more) efficient imitation learning algorithms that directly optimize policies from expert demonstrations. Firstly, when the transition function is known, we build on the nearly minimax optimal algorithm MIMIC-MD and relax a projection operator in it. Based on this change, we develop an adversarial imitation learning (AIL) algorithm named \emph{TAIL} with a gradient-based optimization procedure. Accordingly, TAIL has the same sample complexity (i.e., the number of expert trajectories) $\widetilde{\mathcal{O}}(H^{3/2} |\mathcal{S}|/\varepsilon)$ with MIMIC-MD, where $H$ is the planning horizon, $|\mathcal{S}|$ is the state space size and $\varepsilon$ is desired policy value gap. In addition, TAIL is more practical than MIMIC-MD as the former has a space complexity $\mathcal{O} (|\mathcal{S}||\mathcal{A}|H)$ while the latter's is about $\mathcal{O} (|\mathcal{S}|^2 |\mathcal{A}|^2 H^2)$. Secondly, under the scenario where the transition function is unknown but the interaction is allowed, we present an extension of TAIL named \emph{MB-TAIL}. The sample complexity of MB-TAIL is still $\widetilde{\mathcal{O}}(H^{3/2} |\mathcal{S}|/\varepsilon)$ while the interaction complexity (i.e., the number of interaction episodes) is $\widetilde{\mathcal{O}} (H^3 |\mathcal{S}|^2 |\mathcal{A}| / \varepsilon^2)$. In particular, MB-TAIL is significantly better than the best-known OAL algorithm, which has a sample complexity $\widetilde{\mathcal{O}}(H^{2} |\mathcal{S}|/\varepsilon^2)$ and interaction complexity $\widetilde{\mathcal{O}} (H^4 |\mathcal{S}|^2 |\mathcal{A}| / \varepsilon^2)$. The advances in MB-TAIL are based on a new framework that connects reward-free exploration and AIL. To our understanding, MB-TAIL is the first algorithm that shifts the advances in the known transition setting to the unknown transition setting.

In multi-agent reinforcement learning, independent learners are those that do not access the action selections of other learning agents in the system. This paper investigates the feasibility of using independent learners to find approximate equilibrium policies in non-episodic, discounted stochastic games. We define a property, here called the $\epsilon$-revision paths property, and prove that a class of games exhibiting symmetry among the players has this property for any $\epsilon \geq 0$. Building on this result, we present an independent learning algorithm that comes with high probability guarantees of approximate equilibrium in this class of games. This guarantee is made assuming symmetry alone, without additional assumptions such as a zero sum, team, or potential game structure.

Multi-agent reinforcement learning has made substantial empirical progresses in solving games with a large number of players. However, theoretically, the best known sample complexity for finding a Nash equilibrium in general-sum games scales exponentially in the number of players due to the size of the joint action space, and there is a matching exponential lower bound. This paper investigates what learning goals admit better sample complexities in the setting of $m$-player general-sum Markov games with $H$ steps, $S$ states, and $A_i$ actions per player. First, we design algorithms for learning an $\epsilon$-Coarse Correlated Equilibrium (CCE) in $\widetilde{\mathcal{O}}(H^5S\max_{i\le m} A_i / \epsilon^2)$ episodes, and an $\epsilon$-Correlated Equilibrium (CE) in $\widetilde{\mathcal{O}}(H^6S\max_{i\le m} A_i^2 / \epsilon^2)$ episodes. This is the first line of results for learning CCE and CE with sample complexities polynomial in $\max_{i\le m} A_i$. Our algorithm for learning CE integrates an adversarial bandit subroutine which minimizes a weighted swap regret, along with several novel designs in the outer loop. Second, we consider the important special case of Markov Potential Games, and design an algorithm that learns an $\epsilon$-approximate Nash equilibrium within $\widetilde{\mathcal{O}}(S\sum_{i\le m} A_i / \epsilon^3)$ episodes (when only highlighting the dependence on $S$, $A_i$, and $\epsilon$), which only depends linearly in $\sum_{i\le m} A_i$ and significantly improves over the best known algorithm in the $\epsilon$ dependence. Overall, our results shed light on what equilibria or structural assumptions on the game may enable sample-efficient learning with many players.

We study a novel setting in Online Markov Decision Processes (OMDPs) where the loss function is chosen by a non-oblivious strategic adversary who follows a no-external regret algorithm. In this setting, we first demonstrate that MDP-Expert, an existing algorithm that works well with oblivious adversaries can still apply and achieve a policy regret bound of $\mathcal{O}(\sqrt{T \log(L)}+\tau^2\sqrt{ T \log(|A|)})$ where $L$ is the size of adversary's pure strategy set and $|A|$ denotes the size of agent's action space. Considering real-world games where the support size of a NE is small, we further propose a new algorithm: MDP-Online Oracle Expert (MDP-OOE), that achieves a policy regret bound of $\mathcal{O}(\sqrt{T\log(L)}+\tau^2\sqrt{ T k \log(k)})$ where $k$ depends only on the support size of the NE. MDP-OOE leverages the key benefit of Double Oracle in game theory and thus can solve games with prohibitively large action space. Finally, to better understand the learning dynamics of no-regret methods, under the same setting of no-external regret adversary in OMDPs, we introduce an algorithm that achieves last-round convergence result to a NE. To our best knowledge, this is first work leading to the last iteration result in OMDPs.

Plug-and-Play methods constitute a class of iterative algorithms for imaging problems where regularization is performed by an off-the-shelf denoiser. Although Plug-and-Play methods can lead to tremendous visual performance for various image problems, the few existing convergence guarantees are based on unrealistic (or suboptimal) hypotheses on the denoiser, or limited to strongly convex data terms. In this work, we propose a new type of Plug-and-Play methods, based on half-quadratic splitting, for which the denoiser is realized as a gradient descent step on a functional parameterized by a deep neural network. Exploiting convergence results for proximal gradient descent algorithms in the non-convex setting, we show that the proposed Plug-and-Play algorithm is a convergent iterative scheme that targets stationary points of an explicit global functional. Besides, experiments show that it is possible to learn such a deep denoiser while not compromising the performance in comparison to other state-of-the-art deep denoisers used in Plug-and-Play schemes. We apply our proximal gradient algorithm to various ill-posed inverse problems, e.g. deblurring, super-resolution and inpainting. For all these applications, numerical results empirically confirm the convergence results. Experiments also show that this new algorithm reaches state-of-the-art performance, both quantitatively and qualitatively.

We consider the problem of knowledge transfer when an agent is facing a series of Reinforcement Learning (RL) tasks. We introduce a novel metric between Markov Decision Processes and establish that close MDPs have close optimal value functions. Formally, the optimal value functions are Lipschitz continuous with respect to the tasks space. These theoretical results lead us to a value transfer method for Lifelong RL, which we use to build a PAC-MDP algorithm with improved convergence rate. We illustrate the benefits of the method in Lifelong RL experiments.

Detection of malicious behavior is a fundamental problem in security. One of the major challenges in using detection systems in practice is in dealing with an overwhelming number of alerts that are triggered by normal behavior (the so-called false positives), obscuring alerts resulting from actual malicious activity. While numerous methods for reducing the scope of this issue have been proposed, ultimately one must still decide how to prioritize which alerts to investigate, and most existing prioritization methods are heuristic, for example, based on suspiciousness or priority scores. We introduce a novel approach for computing a policy for prioritizing alerts using adversarial reinforcement learning. Our approach assumes that the attackers know the full state of the detection system and dynamically choose an optimal attack as a function of this state, as well as of the alert prioritization policy. The first step of our approach is to capture the interaction between the defender and attacker in a game theoretic model. To tackle the computational complexity of solving this game to obtain a dynamic stochastic alert prioritization policy, we propose an adversarial reinforcement learning framework. In this framework, we use neural reinforcement learning to compute best response policies for both the defender and the adversary to an arbitrary stochastic policy of the other. We then use these in a double-oracle framework to obtain an approximate equilibrium of the game, which in turn yields a robust stochastic policy for the defender. Extensive experiments using case studies in fraud and intrusion detection demonstrate that our approach is effective in creating robust alert prioritization policies.

In this paper we study the convergence of generative adversarial networks (GANs) from the perspective of the informativeness of the gradient of the optimal discriminative function. We show that GANs without restriction on the discriminative function space commonly suffer from the problem that the gradient produced by the discriminator is uninformative to guide the generator. By contrast, Wasserstein GAN (WGAN), where the discriminative function is restricted to $1$-Lipschitz, does not suffer from such a gradient uninformativeness problem. We further show in the paper that the model with a compact dual form of Wasserstein distance, where the Lipschitz condition is relaxed, also suffers from this issue. This implies the importance of Lipschitz condition and motivates us to study the general formulation of GANs with Lipschitz constraint, which leads to a new family of GANs that we call Lipschitz GANs (LGANs). We show that LGANs guarantee the existence and uniqueness of the optimal discriminative function as well as the existence of a unique Nash equilibrium. We prove that LGANs are generally capable of eliminating the gradient uninformativeness problem. According to our empirical analysis, LGANs are more stable and generate consistently higher quality samples compared with WGAN.

We know SGAN may have a risk of gradient vanishing. A significant improvement is WGAN, with the help of 1-Lipschitz constraint on discriminator to prevent from gradient vanishing. Is there any GAN having no gradient vanishing and no 1-Lipschitz constraint on discriminator? We do find one, called GAN-QP. To construct a new framework of Generative Adversarial Network (GAN) usually includes three steps: 1. choose a probability divergence; 2. convert it into a dual form; 3. play a min-max game. In this articles, we demonstrate that the first step is not necessary. We can analyse the property of divergence and even construct new divergence in dual space directly. As a reward, we obtain a simpler alternative of WGAN: GAN-QP. We demonstrate that GAN-QP have a better performance than WGAN in theory and practice.

北京阿比特科技有限公司