亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fairness in machine learning has attained significant focus due to the widespread application in high-stake decision-making tasks. Unregulated machine learning classifiers can exhibit bias towards certain demographic groups in data, thus the quantification and mitigation of classifier bias is a central concern in fairness in machine learning. In this paper, we aim to quantify the influence of different features in a dataset on the bias of a classifier. To do this, we introduce the Fairness Influence Function (FIF). This function breaks down bias into its components among individual features and the intersection of multiple features. The key idea is to represent existing group fairness metrics as the difference of the scaled conditional variances in the classifier's prediction and apply a decomposition of variance according to global sensitivity analysis. To estimate FIFs, we instantiate an algorithm FairXplainer that applies variance decomposition of classifier's prediction following local regression. Experiments demonstrate that FairXplainer captures FIFs of individual feature and intersectional features, provides a better approximation of bias based on FIFs, demonstrates higher correlation of FIFs with fairness interventions, and detects changes in bias due to fairness affirmative/punitive actions in the classifier.

相關內容

We propose two specifications of a real-time mixed-frequency semi-structural time series model for evaluating the output potential, output gap, Phillips curve, and Okun's law for the US. The baseline model uses minimal theory-based multivariate identification restrictions to inform trend-cycle decomposition, while the alternative model adds the CBO's output gap measure as an observed variable. The latter model results in a smoother output potential and lower cyclical correlation between inflation and real variables but performs worse in forecasting beyond the short term. This methodology allows for the assessment and real-time monitoring of official trend and gap estimates.

In many real world situations, like minor traffic offenses in big cities, a central authority is tasked with periodic administering punishments to a large number of individuals. Common practice is to give each individual a chance to suffer a smaller fine and be guaranteed to avoid the legal process with probable considerably larger punishment. However, thanks to the large number of offenders and a limited capacity of the central authority, the individual risk is typically small and a rational individual will not choose to pay the fine. Here we show that if the central authority processes the offenders in a publicly known order, it properly incentives the offenders to pay the fine. We show analytically and on realistic experiments that our mechanism promotes non-cooperation and incentives individuals to pay. Moreover, the same holds for an arbitrary coalition. We quantify the expected total payment the central authority receives, and show it increases considerably.

Large language models have demonstrated surprising ability to perform in-context learning, i.e., these models can be directly applied to solve numerous downstream tasks by conditioning on a prompt constructed by a few input-output examples. However, prior research has shown that in-context learning can suffer from high instability due to variations in training examples, example order, and prompt formats. Therefore, the construction of an appropriate prompt is essential for improving the performance of in-context learning. In this paper, we revisit this problem from the view of predictive bias. Specifically, we introduce a metric to evaluate the predictive bias of a fixed prompt against labels or a given attributes. Then we empirically show that prompts with higher bias always lead to unsatisfactory predictive quality. Based on this observation, we propose a novel search strategy based on the greedy search to identify the near-optimal prompt for improving the performance of in-context learning. We perform comprehensive experiments with state-of-the-art mainstream models such as GPT-3 on various downstream tasks. Our results indicate that our method can enhance the model's in-context learning performance in an effective and interpretable manner.

Weak supervision overcomes the label bottleneck, enabling efficient development of training sets. Millions of models trained on such datasets have been deployed in the real world and interact with users on a daily basis. However, the techniques that make weak supervision attractive -- such as integrating any source of signal to estimate unknown labels -- also ensure that the pseudolabels it produces are highly biased. Surprisingly, given everyday use and the potential for increased bias, weak supervision has not been studied from the point of view of fairness. This work begins such a study. Our departure point is the observation that even when a fair model can be built from a dataset with access to ground-truth labels, the corresponding dataset labeled via weak supervision can be arbitrarily unfair. Fortunately, not all is lost: we propose and empirically validate a model for source unfairness in weak supervision, then introduce a simple counterfactual fairness-based technique that can mitigate these biases. Theoretically, we show that it is possible for our approach to simultaneously improve both accuracy and fairness metrics -- in contrast to standard fairness approaches that suffer from tradeoffs. Empirically, we show that our technique improves accuracy on weak supervision baselines by as much as 32% while reducing demographic parity gap by 82.5%.

Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

北京阿比特科技有限公司