Detecting and mitigating Radio Frequency Interference (RFI) is critical for enabling and maximising the scientific output of radio telescopes. The emergence of machine learning methods has led to their application in radio astronomy, and in RFI detection. Spiking Neural Networks (SNNs), inspired by biological systems, are well-suited for processing spatio-temporal data. This study introduces the first exploratory application of SNNs to an astronomical data-processing task, specifically RFI detection. We adapt the nearest-latent-neighbours (NLN) algorithm and auto-encoder architecture proposed by previous authors to SNN execution by direct ANN2SNN conversion, enabling simplified downstream RFI detection by sampling the naturally varying latent space from the internal spiking neurons. Our subsequent evaluation aims to determine whether SNNs are viable for future RFI detection schemes. We evaluate detection performance with the simulated HERA telescope and hand-labelled LOFAR observation dataset the original authors provided. We additionally evaluate detection performance with a new MeerKAT-inspired simulation dataset that provides a technical challenge for machine-learnt RFI detection methods. This dataset focuses on satellite-based RFI, an increasingly important class of RFI and is an additional contribution. Our approach remains competitive with existing methods in AUROC, AUPRC and F1 scores for the HERA dataset but exhibits difficulty in the LOFAR and Tabascal datasets. Our method maintains this accuracy while completely removing the compute and memory-intense latent sampling step found in NLN. This work demonstrates the viability of SNNs as a promising avenue for machine-learning-based RFI detection in radio telescopes by establishing a minimal performance baseline on traditional and nascent satellite-based RFI sources and is the first work to our knowledge to apply SNNs in astronomy.
Age is one of the major known risk factors for Alzheimer's Disease (AD). Detecting AD early is crucial for effective treatment and preventing irreversible brain damage. Brain age, a measure derived from brain imaging reflecting structural changes due to aging, may have the potential to identify AD onset, assess disease risk, and plan targeted interventions. Deep learning-based regression techniques to predict brain age from magnetic resonance imaging (MRI) scans have shown great accuracy recently. However, these methods are subject to an inherent regression to the mean effect, which causes a systematic bias resulting in an overestimation of brain age in young subjects and underestimation in old subjects. This weakens the reliability of predicted brain age as a valid biomarker for downstream clinical applications. Here, we reformulate the brain age prediction task from regression to classification to address the issue of systematic bias. Recognizing the importance of preserving ordinal information from ages to understand aging trajectory and monitor aging longitudinally, we propose a novel ORdinal Distance Encoded Regularization (ORDER) loss that incorporates the order of age labels, enhancing the model's ability to capture age-related patterns. Extensive experiments and ablation studies demonstrate that this framework reduces systematic bias, outperforms state-of-art methods by statistically significant margins, and can better capture subtle differences between clinical groups in an independent AD dataset. Our implementation is publicly available at //github.com/jaygshah/Robust-Brain-Age-Prediction.
We develop a new, spectral approach for identifying and estimating average counterfactual outcomes under a low-rank factor model with short panel data and general outcome missingness patterns. Applications include event studies and studies of outcomes of "matches" between agents of two types, e.g. workers and firms, typically conducted under less-flexible Two-Way-Fixed-Effects (TWFE) models of outcomes. Given an infinite population of units and a finite number of outcomes, we show our approach identifies all counterfactual outcome means, including those not estimable by existing methods, if a particular graph constructed based on overlaps in observed outcomes between subpopulations is connected. Our analogous, computationally efficient estimation procedure yields consistent, asymptotically normal estimates of counterfactual outcome means under fixed-$T$ (number of outcomes), large-$N$ (sample size) asymptotics. In a semi-synthetic simulation study based on matched employer-employee data, our estimator has lower bias and only slightly higher variance than a TWFE-model-based estimator when estimating average log-wages.
This paper explores the potential of communicating information gained by static analysis from compilers to Out-of-Order (OoO) machines, focusing on the memory dependence predictor (MDP). The MDP enables loads to issue without all in-flight store addresses being known, with minimal memory order violations. We use LLVM to find loads with no dependencies and label them via their opcode. These labelled loads skip making lookups into the MDP, improving prediction accuracy by reducing false dependencies. We communicate this information in a minimally intrusive way, i.e.~without introducing additional hardware costs or instruction bandwidth, providing these improvements without any additional overhead in the CPU. We find that in select cases in Spec2017, a significant number of load instructions can skip interacting with the MDP and lead to a performance gain. These results point to greater possibilities for static analysis as a source of near zero cost performance gains in future CPU designs.
One-shot channel simulation has recently emerged as a promising alternative to quantization and entropy coding in machine-learning-based lossy data compression schemes. However, while there are several potential applications of channel simulation - lossy compression with realism constraints or differential privacy, to name a few - little is known about its fundamental limitations. In this paper, we restrict our attention to a subclass of channel simulation protocols called causal rejection samplers (CRS), establish new, tighter lower bounds on their expected runtime and codelength, and demonstrate the bounds' achievability. Concretely, for an arbitrary CRS, let $Q$ and $P$ denote a target and proposal distribution supplied as input, and let $K$ be the number of samples examined by the algorithm. We show that the expected runtime $\mathbb{E}[K]$ of any CRS scales at least as $\exp_2(D_\infty[Q || P])$, where $D_\infty[Q || P]$ is the R\'enyi $\infty$-divergence. Regarding the codelength, we show that $D_{KL}[Q || P] \leq D_{CS}[Q || P] \leq \mathbb{H}[K]$, where $D_{CS}[Q || P]$ is a new quantity we call the channel simulation divergence. Furthermore, we prove that our new lower bound, unlike the $D_{KL}[Q || P]$ lower bound, is achievable tightly, i.e. there is a CRS such that $\mathbb{H}[K] \leq D_{CS}[Q || P] + \log_2 (e + 1)$. Finally, we conduct numerical studies of the asymptotic scaling of the codelength of Gaussian and Laplace channel simulation algorithms.
Surrogate neural network-based partial differential equation (PDE) solvers have the potential to solve PDEs in an accelerated manner, but they are largely limited to systems featuring fixed domain sizes, geometric layouts, and boundary conditions. We propose Specialized Neural Accelerator-Powered Domain Decomposition Methods (SNAP-DDM), a DDM-based approach to PDE solving in which subdomain problems containing arbitrary boundary conditions and geometric parameters are accurately solved using an ensemble of specialized neural operators. We tailor SNAP-DDM to 2D electromagnetics and fluidic flow problems and show how innovations in network architecture and loss function engineering can produce specialized surrogate subdomain solvers with near unity accuracy. We utilize these solvers with standard DDM algorithms to accurately solve freeform electromagnetics and fluids problems featuring a wide range of domain sizes.
With the rise of Visual and Language Pretraining (VLP), an increasing number of downstream tasks are adopting the paradigm of pretraining followed by fine-tuning. Although this paradigm has demonstrated potential in various multimodal downstream tasks, its implementation in the remote sensing domain encounters some obstacles. Specifically, the tendency for same-modality embeddings to cluster together impedes efficient transfer learning. To tackle this issue, we review the aim of multimodal transfer learning for downstream tasks from a unified perspective, and rethink the optimization process based on three distinct objectives. We propose "Harmonized Transfer Learning and Modality Alignment (HarMA)", a method that simultaneously satisfies task constraints, modality alignment, and single-modality uniform alignment, while minimizing training overhead through parameter-efficient fine-tuning. Remarkably, without the need for external data for training, HarMA achieves state-of-the-art performance in two popular multimodal retrieval tasks in the field of remote sensing. Our experiments reveal that HarMA achieves competitive and even superior performance to fully fine-tuned models with only minimal adjustable parameters. Due to its simplicity, HarMA can be integrated into almost all existing multimodal pretraining models. We hope this method can facilitate the efficient application of large models to a wide range of downstream tasks while significantly reducing the resource consumption. Code is available at //github.com/seekerhuang/HarMA.
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.