亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While recent innovations on shape technologies allow for the creation of displays with almost unlimited form factors, current graphical user interfaces still rely on rectangular layouts and contents. This rectangular legacy hinders the progress of freeform displays, which are particularly relevant for pervasive scenarios to display interactive dynamic content where and when needed. By challenging the prevailing layout tradition on rectangular displays, freeform user interfaces raise design challenges which call for exploring the interlink between computational approaches and user interface generation and adaptation. In this position paper we report on previous work on content optimization for freeform user interfaces and anticipate the upcoming challenges and opportunities.

相關內容

Games research and industry have developed a solid understanding of how to design engaging, playful experiences that draws players in for hours and causes them to lose their sense of time. While these designs can provide enjoyable experiences, many individuals -- especially children -- may find it challenging to regulate their playing time, and often they struggle to turn off the game. In turn, this affords external regulation of children's playing behavior by limiting playing time or encouraging alternative activities, which frequently leads to conflicts between parents and the children. Here, we see an opportunity for game design to address player disengagement through design, facilitating a timely and autonomous exit from play. Hence, while most research and practitioners design for maximizing player engagement, we argue for a perspective shift towards disengagement as a design tool that allows for unobtrusive and smooth exits from the game. We advocate that interweaving disengagement into the game design could reduce friction within families, allowing children to finish game sessions more easily, facilitate a sense of autonomy, and support an overall healthier relationship with games. In this position paper, we outline a research agenda that examines how game design can address player disengagement, what challenges exist in the specific context of games for children, and how such approaches can be reconciled with the experiential, artistic, and commercial goals of games.

This survey delves into the current state of natural language processing (NLP) for four Ethiopian languages: Amharic, Afaan Oromo, Tigrinya, and Wolaytta. Through this paper, we identify key challenges and opportunities for NLP research in Ethiopia. Furthermore, we provide a centralized repository on GitHub that contains publicly available resources for various NLP tasks in these languages. This repository can be updated periodically with contributions from other researchers. Our objective is to identify research gaps and disseminate the information to NLP researchers interested in Ethiopian languages and encourage future research in this domain.

This research examines the propagation of rumors on social networks during public health emergencies and explores strategies to effectively manage false information in cyberspace. Using a simulation model, the study analyzes the impact of factors such as communication channel control, government intervention, and individual personalities on the spread of rumors. The results suggest that enhancing netizens' knowledge and capacity to recognize and resist rumors, developing rumor-debunking platforms, and promoting a "clear" ecology of network information content are effective strategies for controlling false information in cyberspace. However, the complexity and scale of actual networks present challenges to the development of a comprehensive cyberspace governance system. The findings offer practical guidelines for improving the effectiveness of governance in managing the spread of rumors on social networks.

With the explosive growth of artificial intelligence (AI) and big data, it has become vitally important to organize and represent the enormous volume of knowledge appropriately. As graph data, knowledge graphs accumulate and convey knowledge of the real world. It has been well-recognized that knowledge graphs effectively represent complex information; hence, they rapidly gain the attention of academia and industry in recent years. Thus to develop a deeper understanding of knowledge graphs, this paper presents a systematic overview of this field. Specifically, we focus on the opportunities and challenges of knowledge graphs. We first review the opportunities of knowledge graphs in terms of two aspects: (1) AI systems built upon knowledge graphs; (2) potential application fields of knowledge graphs. Then, we thoroughly discuss severe technical challenges in this field, such as knowledge graph embeddings, knowledge acquisition, knowledge graph completion, knowledge fusion, and knowledge reasoning. We expect that this survey will shed new light on future research and the development of knowledge graphs.

Federated Learning (FL) has gained widespread popularity in recent years due to the fast booming of advanced machine learning and artificial intelligence along with emerging security and privacy threats. FL enables efficient model generation from local data storage of the edge devices without revealing the sensitive data to any entities. While this paradigm partly mitigates the privacy issues of users' sensitive data, the performance of the FL process can be threatened and reached a bottleneck due to the growing cyber threats and privacy violation techniques. To expedite the proliferation of FL process, the integration of blockchain for FL environments has drawn prolific attention from the people of academia and industry. Blockchain has the potential to prevent security and privacy threats with its decentralization, immutability, consensus, and transparency characteristic. However, if the blockchain mechanism requires costly computational resources, then the resource-constrained FL clients cannot be involved in the training. Considering that, this survey focuses on reviewing the challenges, solutions, and future directions for the successful deployment of blockchain in resource-constrained FL environments. We comprehensively review variant blockchain mechanisms that are suitable for FL process and discuss their trade-offs for a limited resource budget. Further, we extensively analyze the cyber threats that could be observed in a resource-constrained FL environment, and how blockchain can play a key role to block those cyber attacks. To this end, we highlight some potential solutions towards the coupling of blockchain and federated learning that can offer high levels of reliability, data privacy, and distributed computing performance.

In recent years, Artificial Intelligence (AI) and Machine learning (ML) have gained significant interest from both, industry and academia. Notably, conventional ML techniques require enormous amounts of power to meet the desired accuracy, which has limited their use mainly to high-capability devices such as network nodes. However, with many advancements in technologies such as the Internet of Things (IoT) and edge computing, it is desirable to incorporate ML techniques into resource-constrained embedded devices for distributed and ubiquitous intelligence. This has motivated the emergence of the TinyML paradigm which is an embedded ML technique that enables ML applications on multiple cheap, resource- and power-constrained devices. However, during this transition towards appropriate implementation of the TinyML technology, multiple challenges such as processing capacity optimization, improved reliability, and maintenance of learning models' accuracy require timely solutions. In this article, various avenues available for TinyML implementation are reviewed. Firstly, a background of TinyML is provided, followed by detailed discussions on various tools supporting TinyML. Then, state-of-art applications of TinyML using advanced technologies are detailed. Lastly, various research challenges and future directions are identified.

Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples still remains a serious challenge. In this context, we extensively investigated 200+ latest papers on FSL published in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL along with impartial comparisons of the strengths and weaknesses of the existing works. For the sake of avoiding conceptual confusion, we first elaborate and compare a set of similar concepts including few-shot learning, transfer learning, and meta-learning. Furthermore, we propose a novel taxonomy to classify the existing work according to the level of abstraction of knowledge in accordance with the challenges of FSL. To enrich this survey, in each subsection we provide in-depth analysis and insightful discussion about recent advances on these topics. Moreover, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into the technology evolution trends together with potential future research opportunities in the hope of providing guidance to follow-up research.

With its powerful capability to deal with graph data widely found in practical applications, graph neural networks (GNNs) have received significant research attention. However, as societies become increasingly concerned with data privacy, GNNs face the need to adapt to this new normal. This has led to the rapid development of federated graph neural networks (FedGNNs) research in recent years. Although promising, this interdisciplinary field is highly challenging for interested researchers to enter into. The lack of an insightful survey on this topic only exacerbates this problem. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a unique 3-tiered taxonomy of the FedGNNs literature to provide a clear view into how GNNs work in the context of Federated Learning (FL). It puts existing works into perspective by analyzing how graph data manifest themselves in FL settings, how GNN training is performed under different FL system architectures and degrees of graph data overlap across data silo, and how GNN aggregation is performed under various FL settings. Through discussions of the advantages and limitations of existing works, we envision future research directions that can help build more robust, dynamic, efficient, and interpretable FedGNNs.

Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.

北京阿比特科技有限公司