亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deepfake videos are becoming increasingly realistic, showing subtle tampering traces on facial areasthat vary between frames. Consequently, many existing Deepfake detection methods struggle to detect unknown domain Deepfake videos while accurately locating the tampered region. To address thislimitation, we propose Delocate, a novel Deepfake detection model that can both recognize andlocalize unknown domain Deepfake videos. Ourmethod consists of two stages named recoveringand localization. In the recovering stage, the modelrandomly masks regions of interest (ROIs) and reconstructs real faces without tampering traces, resulting in a relatively good recovery effect for realfaces and a poor recovery effect for fake faces. Inthe localization stage, the output of the recoveryphase and the forgery ground truth mask serve assupervision to guide the forgery localization process. This process strategically emphasizes the recovery phase of fake faces with poor recovery, facilitating the localization of tampered regions. Ourextensive experiments on four widely used benchmark datasets demonstrate that Delocate not onlyexcels in localizing tampered areas but also enhances cross-domain detection performance.

相關內容

Human action recognition in dark videos is a challenging task for computer vision. Recent research focuses on applying dark enhancement methods to improve the visibility of the video. However, such video processing results in the loss of critical information in the original (un-enhanced) video. Conversely, traditional two-stream methods are capable of learning information from both original and processed videos, but it can lead to a significant increase in the computational cost during the inference phase in the task of video classification. To address these challenges, we propose a novel teacher-student video classification framework, named Dual-Light KnowleDge Distillation for Action Recognition in the Dark (DL-KDD). This framework enables the model to learn from both original and enhanced video without introducing additional computational cost during inference. Specifically, DL-KDD utilizes the strategy of knowledge distillation during training. The teacher model is trained with enhanced video, and the student model is trained with both the original video and the soft target generated by the teacher model. This teacher-student framework allows the student model to predict action using only the original input video during inference. In our experiments, the proposed DL-KDD framework outperforms state-of-the-art methods on the ARID, ARID V1.5, and Dark-48 datasets. We achieve the best performance on each dataset and up to a 4.18% improvement on Dark-48, using only original video inputs, thus avoiding the use of two-stream framework or enhancement modules for inference. We further validate the effectiveness of the distillation strategy in ablative experiments. The results highlight the advantages of our knowledge distillation framework in dark human action recognition.

Large Language Models (LLMs) have succeeded remarkably in understanding long-form contents. However, exploring their capability for generating long-form contents, such as reports and articles, has been relatively unexplored and inadequately assessed by existing benchmarks. The prevalent evaluation methods, which predominantly rely on crowdsourcing, are recognized for their labor-intensive nature and lack of efficiency, whereas automated metrics, such as the ROUGE score, demonstrate discordance with human judgment criteria. In this paper, we propose ProxyQA, an innovative framework dedicated to assessing long-text generation. ProxyQA comprises in-depth human-curated meta-questions spanning various domains, each accompanied by specific proxy-questions with pre-annotated answers. LLMs are tasked to generate extensive content in response to these meta-questions, by engaging an evaluator and incorporating the generated texts as contextual background, ProxyQA assesses the generated content's quality through the evaluator's accuracy in addressing the proxy-questions. We examine multiple LLMs, emphasizing ProxyQA's demanding nature as a high-quality assessment tool. Human evaluation demonstrates that the proxy-question method is notably self-consistent and aligns closely with human evaluative standards. The dataset and leaderboard is available at \url{//proxy-qa.com}.

The increasing difficulty in accurately detecting forged images generated by AIGC(Artificial Intelligence Generative Content) poses many risks, necessitating the development of effective methods to identify and further locate forged areas. In this paper, to facilitate research efforts, we construct a DA-HFNet forged image dataset guided by text or image-assisted GAN and Diffusion model. Our goal is to utilize a hierarchical progressive network to capture forged artifacts at different scales for detection and localization. Specifically, it relies on a dual-attention mechanism to adaptively fuse multi-modal image features in depth, followed by a multi-branch interaction network to thoroughly interact image features at different scales and improve detector performance by leveraging dependencies between layers. Additionally, we extract more sensitive noise fingerprints to obtain more prominent forged artifact features in the forged areas. Extensive experiments validate the effectiveness of our approach, demonstrating significant performance improvements compared to state-of-the-art methods for forged image detection and localization.The code and dataset will be released in the future.

Transformers have revolutionized image modeling tasks with adaptations like DeIT, Swin, SVT, Biformer, STVit, and FDVIT. However, these models often face challenges with inductive bias and high quadratic complexity, making them less efficient for high-resolution images. State space models (SSMs) such as Mamba, V-Mamba, ViM, and SiMBA offer an alternative to handle high resolution images in computer vision tasks. These SSMs encounter two major issues. First, they become unstable when scaled to large network sizes. Second, although they efficiently capture global information in images, they inherently struggle with handling local information. To address these challenges, we introduce Heracles, a novel SSM that integrates a local SSM, a global SSM, and an attention-based token interaction module. Heracles leverages a Hartely kernel-based state space model for global image information, a localized convolutional network for local details, and attention mechanisms in deeper layers for token interactions. Our extensive experiments demonstrate that Heracles-C-small achieves state-of-the-art performance on the ImageNet dataset with 84.5\% top-1 accuracy. Heracles-C-Large and Heracles-C-Huge further improve accuracy to 85.9\% and 86.4\%, respectively. Additionally, Heracles excels in transfer learning tasks on datasets such as CIFAR-10, CIFAR-100, Oxford Flowers, and Stanford Cars, and in instance segmentation on the MSCOCO dataset. Heracles also proves its versatility by achieving state-of-the-art results on seven time-series datasets, showcasing its ability to generalize across domains with spectral data, capturing both local and global information. The project page is available at this link.\url{//github.com/badripatro/heracles}

Natural Language Generation (NLG) accepts input data in the form of images, videos, or text and generates corresponding natural language text as output. Existing NLG methods mainly adopt a supervised approach and rely heavily on coupled data-to-text pairs. However, for many targeted scenarios and for non-English languages, sufficient quantities of labeled data are often not available. To relax the dependency on labeled data of downstream tasks, we propose an intuitive and effective zero-shot learning framework, ZeroNLG, which can deal with multiple NLG tasks, including image-to-text (image captioning), video-to-text (video captioning), and text-to-text (neural machine translation), across English, Chinese, German, and French within a unified framework. ZeroNLG does not require any labeled downstream pairs for training. During training, ZeroNLG (i) projects different domains (across modalities and languages) to corresponding coordinates in a shared common latent space; (ii) bridges different domains by aligning their corresponding coordinates in this space; and (iii) builds an unsupervised multilingual auto-encoder to learn to generate text by reconstructing the input text given its coordinate in shared latent space. Consequently, during inference, based on the data-to-text pipeline, ZeroNLG can generate target sentences across different languages given the coordinate of input data in the common space. Within this unified framework, given visual (imaging or video) data as input, ZeroNLG can perform zero-shot visual captioning; given textual sentences as input, ZeroNLG can perform zero-shot machine translation. We present the results of extensive experiments on twelve NLG tasks, showing that, without using any labeled downstream pairs for training, ZeroNLG generates high-quality and believable outputs and significantly outperforms existing zero-shot methods.

In this study, we explore Transformer-based diffusion models for image and video generation. Despite the dominance of Transformer architectures in various fields due to their flexibility and scalability, the visual generative domain primarily utilizes CNN-based U-Net architectures, particularly in diffusion-based models. We introduce GenTron, a family of Generative models employing Transformer-based diffusion, to address this gap. Our initial step was to adapt Diffusion Transformers (DiTs) from class to text conditioning, a process involving thorough empirical exploration of the conditioning mechanism. We then scale GenTron from approximately 900M to over 3B parameters, observing significant improvements in visual quality. Furthermore, we extend GenTron to text-to-video generation, incorporating novel motion-free guidance to enhance video quality. In human evaluations against SDXL, GenTron achieves a 51.1% win rate in visual quality (with a 19.8% draw rate), and a 42.3% win rate in text alignment (with a 42.9% draw rate). GenTron also excels in the T2I-CompBench, underscoring its strengths in compositional generation. We believe this work will provide meaningful insights and serve as a valuable reference for future research.

Recent advancements in Latent Diffusion Models (LDMs) have propelled them to the forefront of various generative tasks. However, their iterative sampling process poses a significant computational burden, resulting in slow generation speeds and limiting their application in text-to-audio generation deployment. In this work, we introduce AudioLCM, a novel consistency-based model tailored for efficient and high-quality text-to-audio generation. AudioLCM integrates Consistency Models into the generation process, facilitating rapid inference through a mapping from any point at any time step to the trajectory's initial point. To overcome the convergence issue inherent in LDMs with reduced sample iterations, we propose the Guided Latent Consistency Distillation with a multi-step Ordinary Differential Equation (ODE) solver. This innovation shortens the time schedule from thousands to dozens of steps while maintaining sample quality, thereby achieving fast convergence and high-quality generation. Furthermore, to optimize the performance of transformer-based neural network architectures, we integrate the advanced techniques pioneered by LLaMA into the foundational framework of transformers. This architecture supports stable and efficient training, ensuring robust performance in text-to-audio synthesis. Experimental results on text-to-sound generation and text-to-music synthesis tasks demonstrate that AudioLCM needs only 2 iterations to synthesize high-fidelity audios, while it maintains sample quality competitive with state-of-the-art models using hundreds of steps. AudioLCM enables a sampling speed of 333x faster than real-time on a single NVIDIA 4090Ti GPU, making generative models practically applicable to text-to-audio generation deployment. Our extensive preliminary analysis shows that each design in AudioLCM is effective.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

北京阿比特科技有限公司