We propose a spectral method for the 1D-1V Vlasov-Poisson system where the discretization in velocity space is based on asymmetrically-weighted Hermite functions, dynamically adapted via a scaling $\alpha$ and shifting $u$ of the velocity variable. Specifically, at each time instant an adaptivity criterion selects new values of $\alpha$ and $u$ based on the numerical solution of the discrete Vlasov-Poisson system obtained at that time step. Once the new values of the Hermite parameters $\alpha$ and $u$ are fixed, the Hermite expansion is updated and the discrete system is further evolved for the next time step. The procedure is applied iteratively over the desired temporal interval. The key aspects of the adaptive algorithm are: the map between approximation spaces associated with different values of the Hermite parameters that preserves total mass, momentum and energy; and the adaptivity criterion to update $\alpha$ and $u$ based on physics considerations relating the Hermite parameters to the average velocity and temperature of each plasma species. For the discretization of the spatial coordinate, we rely on Fourier functions and use the implicit midpoint rule for time stepping. The resulting numerical method possesses intrinsically the property of fluid-kinetic coupling, where the low-order terms of the expansion are akin to the fluid moments of a macroscopic description of the plasma, while kinetic physics is retained by adding more spectral terms. Moreover, the scheme features conservation of total mass, momentum and energy associated in the discrete, for periodic boundary conditions. A set of numerical experiments confirms that the adaptive method outperforms the non-adaptive one in terms of accuracy and stability of the numerical solution.
An asymptotic preserving and energy stable scheme for the Euler-Poisson system under the quasineutral scaling is designed and analysed. Correction terms are introduced in the convective fluxes and the electrostatic potential, which lead to the dissipation of mechanical energy and the entropy stability. The resolution of the semi-implicit in time finite volume in space fully-discrete scheme involves two steps: the solution of an elliptic problem for the potential and an explicit evaluation for the density and velocity. The proposed scheme possesses several physically relevant attributes, such as the the entropy stability and the consistency with the weak formulation of the continuous Euler-Poisson system. The AP property of the scheme, i.e. the boundedness of the mesh parameters with respect to the Debye length and its consistency with the quasineutral limit system, is shown. The results of numerical case studies are presented to substantiate the robustness and efficiency of the proposed method.
Selective inference (SI) has been actively studied as a promising framework for statistical hypothesis testing for data-driven hypotheses. The basic idea of SI is to make inferences conditional on an event that a hypothesis is selected. In order to perform SI, this event must be characterized in a traceable form. When selection event is too difficult to characterize, additional conditions are introduced for tractability. This additional conditions often causes the loss of power, and this issue is referred to as over-conditioning. Parametric programming-based SI (PP-based SI) has been proposed as one way to address the over-conditioning issue. The main problem of PP-based SI is its high computational cost due to the need to exhaustively explore the data space. In this study, we introduce a procedure to reduce the computational cost while guaranteeing the desired precision, by proposing a method to compute the upper and lower bounds of p-values. We also proposed three types of search strategies that efficiently improve these bounds. We demonstrate the effectiveness of the proposed method in hypothesis testing problems for feature selection in linear models and attention region identification in deep neural networks.
In this paper, we investigate the realization of covert communication in a general radar-communication cooperation system, which includes integrated sensing and communications as a special example. We explore the possibility of utilizing the sensing ability of radar to track and jam the aerial adversary target attempting to detect the transmission. Based on the echoes from the target, the extended Kalman filtering technique is employed to predict its trajectory as well as the corresponding channels. Depending on the maneuvering altitude of adversary target, two channel models are considered, with the aim of maximizing the covert transmission rate by jointly designing the radar waveform and communication transmit beamforming vector based on the constructed channels. For the free-space propagation model, by decoupling the joint design, we propose an efficient algorithm to guarantee that the target cannot detect the transmission. For the Rician fading model, since the multi-path components cannot be estimated, a robust joint transmission scheme is proposed based on the property of the Kullback-Leibler divergence. The convergence behaviour, tracking MSE, false alarm and missed detection probabilities, and covert transmission rate are evaluated. Simulation results show that the proposed algorithms achieve accurate tracking. For both channel models, the proposed sensing-assisted covert transmission design is able to guarantee the covertness, and significantly outperforms the conventional schemes.
Systematic enumeration and identification of unique 3D spatial topologies of complex engineering systems (such as automotive cooling systems, electric power trains, satellites, and aero-engines) are essential to navigation of these expansive design spaces with the goal of identifying new spatial configurations that can satisfy challenging system requirements. However, efficient navigation through discrete 3D spatial topology (ST) options is a very challenging problem due to its combinatorial nature and can quickly exceed human cognitive abilities at even moderate complexity levels. This article presents a new, efficient, and scalable design framework that leverages mathematical spatial graph theory to represent, enumerate, and identify distinctive 3D topological classes for a generic 3D engineering system, given its system architecture (SA) -- its components and their interconnections. First, spatial graph diagrams (SGDs) are generated for a given SA from zero to a specified maximum number of interconnect crossings. Then, corresponding Yamada polynomials for all the planar SGDs are generated. SGDs are categorized into topological classes, each of which shares a unique Yamada polynomial. Finally, within each topological class, 3D geometric models are generated using the spatial graph diagrams (SGDs) having different numbers of interconnect crossings. Selected case studies are presented to illustrate the different features of our proposed framework, including an industrial engineering design application: ST enumeration of a 3D automotive fuel cell cooling system (AFCS). Design guidelines are also provided for practicing engineers to aid the application of this framework to different types of real-world problems such as configuration design and spatial packaging optimization.
We consider the problem of model selection when grouping structure is inherent within the regressors. Using a Bayesian approach, we model the mean vector by a one-group global-local shrinkage prior belonging to a broad class of such priors that includes the horseshoe prior. In the context of variable selection, this class of priors was studied by Tang et al. (2018) \cite{tang2018bayesian}. A modified form of the usual class of global-local shrinkage priors with polynomial tail on the group regression coefficients is proposed. The resulting threshold rule selects the active group if within a group, the ratio of the $L_2$ norm of the posterior mean of its group coefficient to that of the corresponding ordinary least square group estimate is greater than a half. In the theoretical part of this article, we have used the global shrinkage parameter either as a tuning one or an empirical Bayes estimate of it depending on the knowledge regarding the underlying sparsity of the model. When the proportion of active groups is known, using $\tau$ as a tuning parameter, we have proved that our method enjoys variable selection consistency. In case this proportion is unknown, we propose an empirical Bayes estimate of $\tau$. Even if this empirical Bayes estimate is used, then also our half-thresholding rule captures the true sparse group structure. Though our theoretical works rely on a special form of the design matrix, but for general design matrices also, our simulation results show that the half-thresholding rule yields results similar to that of Yang and Narisetty (2020) \cite{yang2020consistent}. As a consequence of this, in a high dimensional sparse group selection problem, instead of using the so-called `gold standard' spike and slab prior, one can use the one-group global-local shrinkage priors with polynomial tail to obtain similar results.
Randomized quadratures for integrating functions in Sobolev spaces of order $\alpha \ge 1$, where the integrability condition is with respect to the Gaussian measure, are considered. In this function space, the optimal rate for the worst-case root-mean-squared error (RMSE) is established. Here, optimality is for a general class of quadratures, in which adaptive non-linear algorithms with a possibly varying number of function evaluations are also allowed. The optimal rate is given by showing matching bounds. First, a lower bound on the worst-case RMSE of $O(n^{-\alpha-1/2})$ is proven, where $n$ denotes an upper bound on the expected number of function evaluations. It turns out that a suitably randomized trapezoidal rule attains this rate, up to a logarithmic factor. A practical error estimator for this trapezoidal rule is also presented. Numerical results support our theory.
Ultra-reliable low latency communications (uRLLC) is adopted in the fifth generation (5G) mobile networks to better support mission-critical applications that demand high level of reliability and low latency. With the aid of well-established multiple-input multiple-output (MIMO) information theory, uRLLC in the future 6G is expected to provide enhanced capability towards extreme connectivity. Since the latency constraint can be represented equivalently by blocklength, channel coding theory at finite block-length plays an important role in the theoretic analysis of uRLLC. On the basis of Polyanskiy's and Yang's asymptotic results, we first derive the exact close-form expressions for the expectation and variance of channel dispersion. Then, the bound of average maximal achievable rate is given for massive MIMO systems in ideal independent and identically distributed fading channels. This is the study to reveal the underlying connections among the fundamental parameters in MIMO transmissions in a concise and complete close-form formula. Most importantly, the inversely proportional law observed therein implies that the latency can be further reduced at expense of spatial degrees of freedom.
Mesoscale simulations of discrete defects in metals provide an ideal framework to investigate the micro-scale mechanisms governing the plastic deformation under high thermal and mechanical loading conditions. To bridge size and time-scale while limiting computational effort, typically the concept of representative volume elements (RVEs) is employed. This approach considers the microstructure evolution in a volume that is representative of the overall material behavior. However, in settings with complex thermal and mechanical loading histories careful consideration of the impact of modeling constraints in terms of time scale and simulation domain on predicted results is required. We address the representation of heterogeneous dislocation structure formation in simulation volumes using the example of residual stress formation during cool-down of laser powder-bed fusion (LPBF) of AISI 316L stainless steel. This is achieved by a series of large-scale three-dimensional discrete dislocation dynamics (DDD) simulations assisted by thermo-mechanical finite element modeling of the LPBF process. Our results show that insufficient size of periodic simulation domains can result in dislocation patterns that reflect the boundaries of the primary cell. More pronounced dislocation interaction observed for larger domains highlight the significance of simulation domain constraints for predicting mechanical properties. We formulate criteria that characterize representative volume elements by capturing the conformity of the dislocation structure to the bulk material. This work provides a basis for future investigations of heterogeneous microstructure formation in mesoscale simulations of bulk material behavior.
In this paper, we study a priori error estimates for the finite element approximation of the nonlinear Schr\"{o}dinger-Poisson model. The electron density is defined by an infinite series over all eigenvalues of the Hamiltonian operator. To establish the error estimate, we present a unified theory of error estimates for a class of nonlinear problems. The theory is based on three conditions: 1) the original problem has a solution $u$ which is the fixed point of a compact operator $\Ca$, 2) $\Ca$ is Fr\'{e}chet-differentiable at $u$ and $\Ci-\Ca'[u]$ has a bounded inverse in a neighborhood of $u$, and 3) there exists an operator $\Ca_h$ which converges to $\Ca$ in the neighborhood of $u$. The theory states that $\Ca_h$ has a fixed point $u_h$ which solves the approximate problem. It also gives the error estimate between $u$ and $u_h$, without assumptions on the well-posedness of the approximate problem. We apply the unified theory to the finite element approximation of the Schr\"{o}dinger-Poisson model and obtain optimal error estimate between the numerical solution and the exact solution. Numerical experiments are presented to verify the convergence rates of numerical solutions.
This paper presents a convergence analysis of a Krylov subspace spectral (KSS) method applied to a 1-D wave equation in an inhomogeneous medium. It will be shown that for sufficiently regular initial data, this KSS method yields unconditional stability, spectral accuracy in space, and second-order accuracy in time, in the case of constant wave speed and a bandlimited reaction term coefficient. Numerical experiments that corroborate the established theory are included, along with an investigation of generalizations, such as to higher space dimensions and nonlinear PDEs, that features performance comparisons with other Krylov subspace-based time-stepping methods. This paper also includes the first stability analysis of a KSS method that does not assume a bandlimited reaction term coefficient.