We provide an alternative derivation of the asymptotic results for the Principal Components estimator of a large approximate factor model. Results are derived under a minimal set of assumptions and, in particular, we require only the existence of 4th order moments. A special focus is given to the time series setting, a case considered in almost all recent econometric applications of factor models. Hence, estimation is based on the classical $n\times n$ sample covariance matrix and not on a $T\times T$ covariance matrix often considered in the literature. Indeed, despite the two approaches being asymptotically equivalent, the former is more coherent with a time series setting and it immediately allows us to write more intuitive asymptotic expansions for the Principal Component estimators showing that they are equivalent to OLS as long as $\sqrt n/T\to 0$ and $\sqrt T/n\to 0$, that is the loadings are estimated in a time series regression as if the factors were known, while the factors are estimated in a cross-sectional regression as if the loadings were known. Finally, we give some alternative sets of primitive sufficient conditions for mean-squared consistency of the sample covariance matrix of the factors, of the idiosyncratic components, and of the observed time series, which is the starting point for Principal Component Analysis.
We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a "price of adaptivity" (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch. En route, we also establish tight upper and lower bounds for (known-parameter) high-probability stochastic convex optimization with heavy-tailed and bounded noise, respectively.
Over the years, RDF streaming was explored in research and practice from many angles, resulting in a wide range of RDF stream definitions. This variety presents a major challenge in discussing and integrating streaming systems, due to the lack of a common language. This work attempts to address this critical research gap, by systematizing RDF stream types present in the literature in a novel taxonomy. The proposed RDF Stream Taxonomy (RDF-STaX) is embodied in an OWL 2 DL ontology that follows the FAIR principles, making it readily applicable in practice. Extensive documentation and additional resources are provided, to foster the adoption of the ontology. Three use cases for the ontology are presented with accompanying competency questions, demonstrating the usefulness of the resource. Additionally, this work introduces a novel nanopublications dataset, which serves as a collaborative, living state-of-the-art review of RDF streaming. The results of a multifaceted evaluation of the resource are presented, testing its logical validity, use case coverage, and adherence to the community's best practices, while also comparing it to other works. RDF-STaX is expected to help drive innovation in RDF streaming, by fostering scientific discussion, cooperation, and tool interoperability.
Randomized experiments are a powerful methodology for data-driven evaluation of decisions or interventions. Yet, their validity may be undermined by network interference. This occurs when the treatment of one unit impacts not only its outcome but also that of connected units, biasing traditional treatment effect estimations. Our study introduces a new framework to accommodate complex and unknown network interference, moving beyond specialized models in the existing literature. Our framework, termed causal message-passing, is grounded in high-dimensional approximate message passing methodology. It is tailored for multi-period experiments and is particularly effective in settings with many units and prevalent network interference. The framework models causal effects as a dynamic process where a treated unit's impact propagates through the network via neighboring units until equilibrium is reached. This approach allows us to approximate the dynamics of potential outcomes over time, enabling the extraction of valuable information before treatment effects reach equilibrium. Utilizing causal message-passing, we introduce a practical algorithm to estimate the total treatment effect, defined as the impact observed when all units are treated compared to the scenario where no unit receives treatment. We demonstrate the effectiveness of this approach across five numerical scenarios, each characterized by a distinct interference structure.
Mixture-of-experts (MoE) is gaining increasing attention due to its unique properties and remarkable performance, especially for language tasks. By sparsely activating a subset of parameters for each token, MoE architecture could increase the model size without sacrificing computational efficiency, achieving a better trade-off between performance and training costs. However, the underlying mechanism of MoE still lacks further exploration, and its modularization degree remains questionable. In this paper, we make an initial attempt to understand the inner workings of MoE-based large language models. Concretely, we comprehensively study the parametric and behavioral features of three recent MoE-based models and reveal some intriguing observations, including (1) Neurons act like fine-grained experts. (2) The router of MoE usually selects experts with larger output norms. (3) The expert diversity increases as the layer increases, while the last layer is an outlier. Based on the observations, we also provide suggestions for a broad spectrum of MoE practitioners, such as router design and expert allocation. We hope this work could shed light on future research on the MoE framework and other modular architectures. Code is available at //github.com/kamanphoebe/Look-into-MoEs.
Speech Emotion Recognition (SER) is an important research topic in human-computer interaction. Many recent works focus on directly extracting emotional cues through pre-trained knowledge, frequently overlooking considerations of appropriateness and comprehensiveness. Therefore, we propose a novel framework for pre-training knowledge in SER, called Multi-perspective Fusion Search Network (MFSN). Considering comprehensiveness, we partition speech knowledge into Textual-related Emotional Content (TEC) and Speech-related Emotional Content (SEC), capturing cues from both semantic and acoustic perspectives, and we design a new architecture search space to fully leverage them. Considering appropriateness, we verify the efficacy of different modeling approaches in capturing SEC and fills the gap in current research. Experimental results on multiple datasets demonstrate the superiority of MFSN.
The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
With the rise of knowledge graph (KG), question answering over knowledge base (KBQA) has attracted increasing attention in recent years. Despite much research has been conducted on this topic, it is still challenging to apply KBQA technology in industry because business knowledge and real-world questions can be rather complicated. In this paper, we present AliMe-KBQA, a bold attempt to apply KBQA in the E-commerce customer service field. To handle real knowledge and questions, we extend the classic "subject-predicate-object (SPO)" structure with property hierarchy, key-value structure and compound value type (CVT), and enhance traditional KBQA with constraints recognition and reasoning ability. We launch AliMe-KBQA in the Marketing Promotion scenario for merchants during the "Double 11" period in 2018 and other such promotional events afterwards. Online results suggest that AliMe-KBQA is not only able to gain better resolution and improve customer satisfaction, but also becomes the preferred knowledge management method by business knowledge staffs since it offers a more convenient and efficient management experience.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.