亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an efficient algorithm to solve semirandom planted instances of any Boolean constraint satisfaction problem (CSP). The semirandom model is a hybrid between worst-case and average-case input models, where the input is generated by (1) choosing an arbitrary planted assignment $x^*$, (2) choosing an arbitrary clause structure, and (3) choosing literal negations for each clause from an arbitrary distribution "shifted by $x^*$" so that $x^*$ satisfies each constraint. For an $n$ variable semirandom planted instance of a $k$-arity CSP, our algorithm runs in polynomial time and outputs an assignment that satisfies all but a $o(1)$-fraction of constraints, provided that the instance has at least $\tilde{O}(n^{k/2})$ constraints. This matches, up to $polylog(n)$ factors, the clause threshold for algorithms that solve fully random planted CSPs [FPV15], as well as algorithms that refute random and semirandom CSPs [AOW15, AGK21]. Our result shows that despite having worst-case clause structure, the randomness in the literal patterns makes semirandom planted CSPs significantly easier than worst-case, where analogous results require $O(n^k)$ constraints [AKK95, FLP16]. Perhaps surprisingly, our algorithm follows a significantly different conceptual framework when compared to the recent resolution of semirandom CSP refutation. This turns out to be inherent and, at a technical level, can be attributed to the need for relative spectral approximation of certain random matrices - reminiscent of the classical spectral sparsification - which ensures that an SDP can certify the uniqueness of the planted assignment. In contrast, in the refutation setting, it suffices to obtain a weaker guarantee of absolute upper bounds on the spectral norm of related matrices.

相關內容

We derive and study time-uniform confidence spheres - termed confidence sphere sequences (CSSs) - which contain the mean of random vectors with high probability simultaneously across all sample sizes. Inspired by the original work of Catoni and Giulini, we unify and extend their analysis to cover both the sequential setting and to handle a variety of distributional assumptions. More concretely, our results include an empirical-Bernstein CSS for bounded random vectors (resulting in a novel empirical-Bernstein confidence interval), a CSS for sub-$\psi$ random vectors, and a CSS for heavy-tailed random vectors based on a sequentially valid Catoni-Giulini estimator. Finally, we provide a version of our empirical-Bernstein CSS that is robust to contamination by Huber noise.

We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine may be $n^{\sigma}$ for arbitrarily small fixed $\sigma>0$. Importantly, the local memory may be substantially smaller than the number of clusters $k$, yet all our algorithms are fast, i.e., run in $O(1)$ rounds. We first devise a fast MPC algorithm for $O(1)$-approximation of uniform facility location. This is the first fully-scalable MPC algorithm that achieves $O(1)$-approximation for any clustering problem in general geometric setting; previous algorithms only provide $\mathrm{poly}(\log n)$-approximation or apply to restricted inputs, like low dimension or small number of clusters $k$; e.g. [Bhaskara and Wijewardena, ICML'18; Cohen-Addad et al., NeurIPS'21; Cohen-Addad et al., ICML'22]. We then build on this facility location result and devise a fast MPC algorithm that achieves $O(1)$-bicriteria approximation for $k$-Median and for $k$-Means, namely, it computes $(1+\varepsilon)k$ clusters of cost within $O(1/\varepsilon^2)$-factor of the optimum for $k$ clusters. A primary technical tool that we introduce, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing for every data point a statistic of its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS'22].

The present paper introduces a fully objective Bayesian analysis to obtain the posterior distribution of an entropy measure. Notably, we consider the gamma distribution, which describes many natural phenomena in physics, engineering, and biology. We reparametrize the model in terms of entropy, and different objective priors are derived, such as Jeffreys prior, reference prior, and matching priors. Since the obtained priors are improper, we prove that the obtained posterior distributions are proper and that their respective posterior means are finite. An intensive simulation study is conducted to select the prior that returns better results regarding bias, mean square error, and coverage probabilities. The proposed approach is illustrated in two datasets: the first relates to the Achaemenid dynasty reign period, and the second describes the time to failure of an electronic component in a sugarcane harvest machine.

With the emergence of Artificial Intelligence, numerical algorithms are moving towards more approximate approaches. For methods such as PCA or diffusion maps, it is necessary to compute eigenvalues of a large matrix, which may also be dense depending on the kernel. A global method, i.e. a method that requires all data points simultaneously, scales with the data dimension N and not with the intrinsic dimension d; the complexity for an exact dense eigendecomposition leads to $\mathcal{O}(N^{3})$. We have combined the two frameworks, $\mathsf{datafold}$ and $\mathsf{GOFMM}$. The first framework computes diffusion maps, where the computational bottleneck is the eigendecomposition while with the second framework we compute the eigendecomposition approximately within the iterative Lanczos method. A hierarchical approximation approach scales roughly with a runtime complexity of $\mathcal{O}(Nlog(N))$ vs. $\mathcal{O}(N^{3})$ for a classic approach. We evaluate the approach on two benchmark datasets -- scurve and MNIST -- with strong and weak scaling using OpenMP and MPI on dense matrices with maximum size of $100k\times100k$.

Optical quantum sensing promises measurement precision beyond classical sensors termed the Heisenberg limit (HL). However, conventional methodologies often rely on prior knowledge of the target system to achieve HL, presenting challenges in practical applications. Addressing this limitation, we introduce an innovative Deep Learning-based Quantum Sensing scheme (DQS), enabling optical quantum sensors to attain HL in agnostic environments. DQS incorporates two essential components: a Graph Neural Network (GNN) predictor and a trigonometric interpolation algorithm. Operating within a data-driven paradigm, DQS utilizes the GNN predictor, trained on offline data, to unveil the intrinsic relationships between the optical setups employed in preparing the probe state and the resulting quantum Fisher information (QFI) after interaction with the agnostic environment. This distilled knowledge facilitates the identification of optimal optical setups associated with maximal QFI. Subsequently, DQS employs a trigonometric interpolation algorithm to recover the unknown parameter estimates for the identified optical setups. Extensive experiments are conducted to investigate the performance of DQS under different settings up to eight photons. Our findings not only offer a new lens through which to accelerate optical quantum sensing tasks but also catalyze future research integrating deep learning and quantum mechanics.

Recently, Zhang et al. have proposed the Diffusion Exponential Integrator Sampler (DEIS) for fast generation of samples from Diffusion Models. It leverages the semi-linear nature of the probability flow ordinary differential equation (ODE) in order to greatly reduce integration error and improve generation quality at low numbers of function evaluations (NFEs). Key to this approach is the score function reparameterisation, which reduces the integration error incurred from using a fixed score function estimate over each integration step. The original authors use the default parameterisation used by models trained for noise prediction -- multiply the score by the standard deviation of the conditional forward noising distribution. We find that although the mean absolute value of this score parameterisation is close to constant for a large portion of the reverse sampling process, it changes rapidly at the end of sampling. As a simple fix, we propose to instead reparameterise the score (at inference) by dividing it by the average absolute value of previous score estimates at that time step collected from offline high NFE generations. We find that our score normalisation (DEIS-SN) consistently improves FID compared to vanilla DEIS, showing an improvement at 10 NFEs from 6.44 to 5.57 on CIFAR-10 and from 5.9 to 4.95 on LSUN-Church 64x64. Our code is available at //github.com/mtkresearch/Diffusion-DEIS-SN

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

北京阿比特科技有限公司