亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present explicit expressions for conforming finite element function spaces, basis functions, and degrees of freedom on the pentatope and tetrahedral prism elements. More generally, our objective is to construct finite element function spaces that maintain conformity with infinite-dimensional spaces of a carefully chosen de Rham complex. This paper is a natural extension of the companion paper entitled "Conforming Finite Element Function Spaces in Four Dimensions, Part I: Foundational Principles and the Tesseract" by Nigam and Williams, (2023). In contrast to Part I, in this paper we focus on two of the most popular elements which do not possess a full tensor-product structure in all four coordinate directions. We note that these elements appear frequently in existing space-time finite element methods. In order to build our finite element spaces, we utilize powerful techniques from the recently developed 'Finite Element Exterior Calculus'. Subsequently, we translate our results into the well-known language of linear algebra (vectors and matrices) in order to facilitate implementation by scientists and engineers.

相關內容

In this work, we present a method to add perturbations to the code descriptions to create new inputs in natural language (NL) from well-intentioned developers that diverge from the original ones due to the use of new words or because they miss part of them. The goal is to analyze how and to what extent perturbations affect the performance of AI code generators in the context of security-oriented code. First, we show that perturbed descriptions preserve the semantics of the original, non-perturbed ones. Then, we use the method to assess the robustness of three state-of-the-art code generators against the newly perturbed inputs, showing that the performance of these AI-based solutions is highly affected by perturbations in the NL descriptions. To enhance their robustness, we use the method to perform data augmentation, i.e., to increase the variability and diversity of the NL descriptions in the training data, proving its effectiveness against both perturbed and non-perturbed code descriptions.

In this paper, we introduce a set of \textit{Linear Temporal Logic} (LTL) formulae designed to provide explanations for policies. Our focus is on crafting explanations that elucidate both the ultimate objectives accomplished by the policy and the prerequisites it upholds throughout its execution. These LTL-based explanations feature a structured representation, which is particularly well-suited for local-search techniques. The effectiveness of our proposed approach is illustrated through a simulated capture the flag environment. The paper concludes with suggested directions for future research.

In this paper, we propose a new method called Clustering Topological PRM (CTopPRM) for finding multiple homotopically distinct paths in 3D cluttered environments. Finding such distinct paths, e.g., going around an obstacle from a different side, is useful in many applications. Among others, using multiple distinct paths is necessary for optimization-based trajectory planners where found trajectories are restricted to only a single homotopy class of a given path. Distinct paths can also be used to guide sampling-based motion planning and thus increase the effectiveness of planning in environments with narrow passages. Graph-based representation called roadmap is a common representation for path planning and also for finding multiple distinct paths. However, challenging environments with multiple narrow passages require a densely sampled roadmap to capture the connectivity of the environment. Searching such a dense roadmap for multiple paths is computationally too expensive. Therefore, the majority of existing methods construct only a sparse roadmap which, however, struggles to find all distinct paths in challenging environments. To this end, we propose the CTopPRM which creates a sparse graph by clustering an initially sampled dense roadmap. Such a reduced roadmap allows fast identification of homotopically distinct paths captured in the dense roadmap. We show, that compared to the existing methods the CTopPRM improves the probability of finding all distinct paths by almost 20% in tested environments, during same run-time. The source code of our method is released as an open-source package.

In this paper, we introduce a novel analysis of neural networks based on geometric (Clifford) algebra and convex optimization. We show that optimal weights of deep ReLU neural networks are given by the wedge product of training samples when trained with standard regularized loss. Furthermore, the training problem reduces to convex optimization over wedge product features, which encode the geometric structure of the training dataset. This structure is given in terms of signed volumes of triangles and parallelotopes generated by data vectors. The convex problem finds a small subset of samples via $\ell_1$ regularization to discover only relevant wedge product features. Our analysis provides a novel perspective on the inner workings of deep neural networks and sheds light on the role of the hidden layers.

In the present study, we delineate a strategy focused on non-parametric quantum circuits for the generation of Gaussian random variables (GRVs). This quantum-centric approach serves as a substitute for conventional pseudorandom number generators (PRNGs), such as the \textbf{torch.rand} function in PyTorch. The principal theme of our research is the incorporation of Quantum Random Number Generators (QRNGs) into classical models of diffusion. Notably, our Quantum Gaussian Random Variable Generator fulfills dual roles, facilitating simulations in both Stable Diffusion (SD) and Brownian Motion (BM). This diverges markedly from prevailing methods that utilize parametric quantum circuits (PQCs), often in conjunction with variational quantum eigensolvers (VQEs). Although conventional techniques can accurately approximate ground states in complex systems or model elaborate probability distributions, they require a computationally demanding optimization process to tune parameters. Our non-parametric strategy obviates this necessity. To facilitate assimilating our methodology into existing computational frameworks, we put forward QonFusion, a Python library congruent with both PyTorch and PennyLane, functioning as a bridge between classical and quantum computational paradigms. We validate QonFusion through extensive statistical testing, including tests which confirm the statistical equivalence of the Gaussian samples from our quantum approach to classical counterparts within defined significance limits. QonFusion is available at \url{//boltzmannentropy.github.io/qonfusion.github.io/} to reproduce all findings here.

Nested simulation concerns estimating functionals of a conditional expectation via simulation. In this paper, we propose a new method based on kernel ridge regression to exploit the smoothness of the conditional expectation as a function of the multidimensional conditioning variable. Asymptotic analysis shows that the proposed method can effectively alleviate the curse of dimensionality on the convergence rate as the simulation budget increases, provided that the conditional expectation is sufficiently smooth. The smoothness bridges the gap between the cubic root convergence rate (that is, the optimal rate for the standard nested simulation) and the square root convergence rate (that is, the canonical rate for the standard Monte Carlo simulation). We demonstrate the performance of the proposed method via numerical examples from portfolio risk management and input uncertainty quantification.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司